Skip to main content
Log in

Most high-grade neuroendocrine tumours of the lung are likely to secondarily develop from pre-existing carcinoids: innovative findings skipping the current pathogenesis paradigm

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Among lung neuroendocrine tumours (Lung-NETs), typical carcinoid (TC) and atypical carcinoid (AC) are considered separate entities as opposed to large cell neuroendocrine carcinoma (LCNEC) and small cell lung carcinoma (SCLC). By means of two-way clustering analysis of previously reported next-generation sequencing data on 148 surgically resected Lung-NETs, six histology-independent clusters (C1 → C6) accounting for 68% of tumours were identified. Low-grade Lung-NETs were likely to evolve into high-grade tumours following two smoke-related paths. Tumour composition of the first path (C5 → C1 → C6) was coherent with the hypothesis of an evolution of TC to LCNEC, even with a conversion of SCLC-featuring tumours to LCNEC. The second path (C4 → C2–C3) had a tumour composition supporting the evolution of AC to SCLC-featuring tumours. The relevant Ki-67 labelling index varied accordingly, with median values being 5%, 9% and 50% in the cluster sequence C5 → C1 → C6, 12% in cluster C4 and 50–60% in cluster C2–C3. This proof-of-concept study suggests an innovative view on the progression of pre-existing TC or AC to high-grade NE carcinomas in most Lung-NET instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Travis W, Brambilla E, Burke A, Marx A, Nicholson A (2015) WHO classification of tumours of the lung, pleura, thymus and heart. IARC Press, Lyon

    Google Scholar 

  2. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JH, Beasley MB, Chirieac LR, Dacic S, Duhig E, Flieder DB, Geisinger K, Hirsch FR, Ishikawa Y, Kerr KM, Noguchi M, Pelosi G, Powell CA, Tsao MS, Wistuba I (2015) The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 10:1243–1260

    Article  PubMed  Google Scholar 

  3. Fernandez-Cuesta L, Peifer M, Lu X, Sun R, Ozretic L, Seidel D, Zander T, Leenders F, George J, Muller C, Dahmen I, Pinther B, Bosco G, Konrad K, Altmuller J, Nurnberg P, Achter V, Lang U, Schneider PM, Bogus M, Soltermann A, Brustugun OT, Helland A, Solberg S, Lund-Iversen M, Ansen S, Stoelben E, Wright GM, Russell P, Wainer Z, Solomon B, Field JK, Hyde R, Davies MP, Heukamp LC, Petersen I, Perner S, Lovly CM, Cappuzzo F, Travis WD, Wolf J, Vingron M, Brambilla E, Haas SA, Buettner R, Thomas RK (2014) Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nat Commun 5:3518

    Article  PubMed  PubMed Central  Google Scholar 

  4. Peifer M, Fernandez-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, Plenker D, Leenders F, Sun R, Zander T, Menon R, Koker M, Dahmen I, Muller C, Di Cerbo V, Schildhaus HU, Altmuller J, Baessmann I, Becker C, de Wilde B, Vandesompele J, Bohm D, Ansen S, Gabler F, Wilkening I, Heynck S, Heuckmann JM, Lu X, Carter SL, Cibulskis K, Banerji S, Getz G, Park KS, Rauh D, Grutter C, Fischer M, Pasqualucci L, Wright G, Wainer Z, Russell P, Petersen I, Chen Y, Stoelben E, Ludwig C, Schnabel P, Hoffmann H, Muley T, Brockmann M, Engel-Riedel W, Muscarella LA, Fazio VM, Groen H, Timens W, Sietsma H, Thunnissen E, Smit E, Heideman DA, Snijders PJ, Cappuzzo F, Ligorio C, Damiani S, Field J, Solberg S, Brustugun OT, Lund-Iversen M, Sanger J, Clement JH, Soltermann A, Moch H, Weder W, Solomon B, Soria JC, Validire P, Besse B, Brambilla E, Brambilla C, Lantuejoul S, Lorimier P, Schneider PM, Hallek M, Pao W, Meyerson M, Sage J, Shendure J, Schneider R, Buttner R, Wolf J, Nurnberg P, Perner S, Heukamp LC, Brindle PK, Haas S, Thomas RK (2012) Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 44(10):1104–1110. https://doi.org/10.1038/ng.2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pleasance ED, Stephens PJ, O’Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, Greenman C, Varela I, Nik-Zainal S, Davies HR, Ordonez GR, Mudie LJ, Latimer C, Edkins S, Stebbings L, Chen L, Jia M, Leroy C, Marshall J, Menzies A, Butler A, Teague JW, Mangion J, Sun YA, McLaughlin SF, Peckham HE, Tsung EF, Costa GL, Lee CC, Minna JD, Gazdar A, Birney E, Rhodes MD, McKernan KJ, Stratton MR, Futreal PA, Campbell PJ (2010) A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463(7278):184–190. https://doi.org/10.1038/nature08629

    Article  CAS  PubMed  Google Scholar 

  6. Scarpa A, Chang DK, Nones K, Corbo V, Patch AM, Bailey P, Lawlor RT, Johns AL, Miller DK, Mafficini A, Rusev B, Scardoni M, Antonello D, Barbi S, Sikora KO, Cingarlini S, Vicentini C, McKay S, Quinn MC, Bruxner TJ, Christ AN, Harliwong I, Idrisoglu S, McLean S, Nourse C, Nourbakhsh E, Wilson PJ, Anderson MJ, Fink JL, Newell F, Waddell N, Holmes O, Kazakoff SH, Leonard C, Wood S, Xu Q, Nagaraj SH, Amato E, Dalai I, Bersani S, Cataldo I, Dei Tos AP, Capelli P, Davi MV, Landoni L, Malpaga A, Miotto M, Whitehall VL, Leggett BA, Harris JL, Harris J, Jones MD, Humphris J, Chantrill LA, Chin V, Nagrial AM, Pajic M, Scarlett CJ, Pinho A, Rooman I, Toon C, Wu J, Pinese M, Cowley M, Barbour A, Mawson A, Humphrey ES, Colvin EK, Chou A, Lovell JA, Jamieson NB, Duthie F, Gingras MC, Fisher WE, Dagg RA, Lau LM, Lee M, Pickett HA, Reddel RR, Samra JS, Kench JG, Merrett ND, Epari K, Nguyen NQ, Zeps N, Falconi M, Simbolo M, Butturini G, Van Buren G, Partelli S, Fassan M, Australian Pancreatic Cancer Genome I, Khanna KK, Gill AJ, Wheeler DA, Gibbs RA, Musgrove EA, Bassi C, Tortora G, Pederzoli P, Pearson JV, Waddell N, Biankin AV, Grimmond SM (2017) Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 543:65–71

    Article  CAS  PubMed  Google Scholar 

  7. Strobel P, Zettl A, Shilo K, Chuang WY, Nicholson AG, Matsuno Y, Gal A, Laeng RH, Engel P, Capella C, Marino M, Chan JK, Rosenwald A, Travis W, Franks TJ, Ellenberger D, Schaefer IM, Marx A (2014) Tumor genetics and survival of thymic neuroendocrine neoplasms: a multi-institutional clinicopathologic study. Genes Chromosom Cancer 53(9):738–749. https://doi.org/10.1002/gcc.22183

    Article  PubMed  Google Scholar 

  8. Rekhtman N, Pietanza MC, Hellmann MD, Naidoo J, Arora A, Won H, Halpenny DF, Wang H, Tian SK, Litvak AM, Paik PK, Drilon A, Socci N, Poirier JT, Shen R, Berger MF, Moreira AL, Travis WD, Rudin CM, Ladanyi M (2016) Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets. Clin Cancer Res 22(14):3618–3629. https://doi.org/10.1158/1078-0432.CCR-15-2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miyoshi T, Umemura S, Matsumura Y, Mimaki S, Tada S, Makinoshima H, Ishii G, Udagawa H, Matsumoto S, Yoh K, Niho S, Ohmatsu H, Aokage K, Hishida T, Yoshida J, Nagai K, Goto K, Tsuboi M, Tsuchihara K (2017) Genomic profiling of large-cell neuroendocrine carcinoma of the lung. Clin Cancer Res 23:757–765

    Article  CAS  PubMed  Google Scholar 

  10. Swarts DR, Ramaekers FC, Speel EJ (2012) Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities. Biochim Biophys Acta 1826(2):255–271. https://doi.org/10.1016/j.bbcan.2012.05.001

    CAS  PubMed  Google Scholar 

  11. Fabbri A, Cossa M, Sonzogni A, Bidoli P, Canova S, Cortinovis D, Abbate MI, Calabrese F, Nannini N, Lunardi F, Rossi G, La Rosa S, Capella C, Tamborini E, Perrone F, Busico A, Capone I, Valeri B, Pastorino U, Albini A, Pelosi G (2017) Thymus neuroendocrine tumors with CTNNB1 gene mutations, disarrayed ss-catenin expression, and dual intra-tumor Ki-67 labeling index compartmentalization challenge the concept of secondary high-grade neuroendocrine tumor: a paradigm shift. Virchows Arch 471:31–47

    Article  CAS  PubMed  Google Scholar 

  12. Simbolo M, Mafficini A, Sikora KO, Fassan M, Barbi S, Corbo V, Mastracci L, Rusev B, Grillo F, Vicentini C, Ferrara R, Pilotto S, Davini F, Pelosi G, Lawlor RT, Chilosi M, Tortora G, Bria E, Fontanini G, Volante M, Scarpa A (2017) Lung neuroendocrine tumours: deep sequencing of the four World Health Organization histotypes reveals chromatin-remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D. J Pathol 241:488–500

    Article  CAS  PubMed  Google Scholar 

  13. Tang LH, Untch BR, Reidy DL, O’Reilly E, Dhall D, Jih L, Basturk O, Allen PJ, Klimstra DS (2016) Well-differentiated neuroendocrine tumors with a morphologically apparent high-grade component: a pathway distinct from poorly differentiated neuroendocrine carcinomas. Clin Cancer Res 22(4):1011–1017. https://doi.org/10.1158/1078-0432.CCR-15-0548

    Article  CAS  PubMed  Google Scholar 

  14. Vijayvergia N, Boland PM, Handorf E, Gustafson KS, Gong Y, Cooper HS, Sheriff F, Astsaturov I, Cohen SJ, Engstrom PF (2016) Molecular profiling of neuroendocrine malignancies to identify prognostic and therapeutic markers: a Fox Chase Cancer Center Pilot Study. Br J Cancer 115(5):564–570. https://doi.org/10.1038/bjc.2016.229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vollbrecht C, Werner R, Walter RF, Christoph DC, Heukamp LC, Peifer M, Hirsch B, Burbat L, Mairinger T, Schmid KW, Wohlschlaeger J, Mairinger FD (2015) Mutational analysis of pulmonary tumours with neuroendocrine features using targeted massive parallel sequencing: a comparison of a neglected tumour group. Br J Cancer 113(12):1704–1711. https://doi.org/10.1038/bjc.2015.397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Voortman J, Lee JH, Killian JK, Suuriniemi M, Wang Y, Lucchi M, Smith WI Jr, Meltzer P, Giaccone G (2010) Array comparative genomic hybridization-based characterization of genetic alterations in pulmonary neuroendocrine tumors. Proc Natl Acad Sci U S A 107(29):13040–13045. https://doi.org/10.1073/pnas.1008132107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Swarts DR, Claessen SM, Jonkers YM, van Suylen RJ, Dingemans AM, de Herder WW, de Krijger RR, Smit EF, Thunnissen FB, Seldenrijk CA, Vink A, Perren A, Ramaekers FC, Speel EJ (2011) Deletions of 11q22.3-q25 are associated with atypical lung carcinoids and poor clinical outcome. Am J Pathol 179(3):1129–1137. https://doi.org/10.1016/j.ajpath.2011.05.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Swarts DR, Henfling ME, Van Neste L, van Suylen RJ, Dingemans AM, Dinjens WN, Haesevoets A, Rudelius M, Thunnissen E, Volante M, Van Criekinge W, van Engeland M, Ramaekers FC, Speel EJ (2013) CD44 and OTP are strong prognostic markers for pulmonary carcinoids. Clin Cancer Res 19(8):2197–2207. https://doi.org/10.1158/1078-0432.CCR-12-3078

    Article  CAS  PubMed  Google Scholar 

  19. Swarts DR, Scarpa A, Corbo V, Van Criekinge W, van Engeland M, Gatti G, Henfling ME, Papotti M, Perren A, Ramaekers FC, Speel EJ, Volante M (2014) MEN1 gene mutation and reduced expression are associated with poor prognosis in pulmonary carcinoids. J Clin Endocrinol Metab 99:E374–E378

    Article  CAS  PubMed  Google Scholar 

  20. Swarts DR, Van Neste L, Henfling ME, Eijkenboom I, Eijk PP, van Velthuysen ML, Vink A, Volante M, Ylstra B, Van Criekinge W, van Engeland M, Ramaekers FC, Speel EJ (2013) An exploration of pathways involved in lung carcinoid progression using gene expression profiling. Carcinogenesis 34(12):2726–2737. https://doi.org/10.1093/carcin/bgt271

    Article  CAS  PubMed  Google Scholar 

  21. Quinn AM, Chaturvedi A, Nonaka D (2017) High-grade neuroendocrine carcinoma of the lung with carcinoid morphology: a study of 12 cases. Am J Surg Pathol 41:263–270

    Article  PubMed  Google Scholar 

  22. Tang LH, Basturk O, Sue JJ, Klimstra DS (2016) A practical approach to the classification of WHO grade 3 (G3) well-differentiated neuroendocrine tumor (WD-NET) and poorly differentiated neuroendocrine carcinoma (PD-NEC) of the pancreas. Am J Surg Pathol 40(9):1192–1202. https://doi.org/10.1097/PAS.0000000000000662

    Article  PubMed  PubMed Central  Google Scholar 

  23. Debelenko LV, Swalwell JI, Kelley MJ, Brambilla E, Manickam P, Baibakov G, Agarwal SK, Spiegel AM, Marx SJ, Chandrasekharappa SC, Collins FS, Travis WD, Emmert-Buck MR (2000) MEN1 gene mutation analysis of high-grade neuroendocrine lung carcinoma. Genes Chromosom Cancer 28(1):58–65. https://doi.org/10.1002/(SICI)1098-2264(200005)28:1<58::AID-GCC7>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  24. Desmeules P, Sabari J, Santos-Zabala ML, Litvak AM, Pietanza MC, Poirier JT, Rudin CM, Klimstra DS, Travis W, Rekhtman N (2017) Metastatic lung carcinoid tumors: evidence of proliferation rate progression at metastatic sites (Abstract #1911). Mod Pathol 30:475A

    Google Scholar 

  25. Pelosi G, Bresaola E, Bogina G, Pasini F, Rodella S, Castelli P, Iacono C, Serio G, Zamboni G (1996) Endocrine tumors of the pancreas: Ki-67 immunoreactivity on paraffin sections is an independent predictor for malignancy: a comparative study with proliferating-cell nuclear antigen and progesterone receptor protein immunostaining, mitotic index, and other clinicopathologic variables. Hum Pathol 27:1124–1134

    Article  CAS  PubMed  Google Scholar 

  26. Moran CA, Suster S (2000) Thymic neuroendocrine carcinomas with combined features ranging from well-differentiated (carcinoid) to small cell carcinoma. A clinicopathologic and immunohistochemical study of 11 cases. Am J Clin Pathol 113:345–350

    Article  CAS  PubMed  Google Scholar 

  27. La Rosa S, Sessa F, Uccella S (2016) Mixed neuroendocrine-nonneuroendocrine neoplasms (MiNENs): unifying the concept of a heterogeneous group of neoplasms. Endocr Pathol 27:284–311

    Article  PubMed  Google Scholar 

  28. Lloyd R, Osamura R, Klöppel G, Rosai J (2017) WHO classification of tumours of endocrine organs. IARC, Lyon

    Google Scholar 

  29. Klimstra DS (2016) Pathologic classification of neuroendocrine neoplasms. Hematol Oncol Clin North Am 30(1):1–19. https://doi.org/10.1016/j.hoc.2015.08.005

    Article  PubMed  Google Scholar 

  30. Klimstra DS, Beltran H, Lilenbaum R, Bergsland E (2015) The spectrum of neuroendocrine tumors: histologic classification, unique features and areas of overlap. Am Soc Clin Oncol Educ Book 35:92–103. https://doi.org/10.14694/EdBook_AM.2015.35.92

    Article  Google Scholar 

  31. Yang Z, Tang LH, Klimstra DS (2013) Gastroenteropancreatic neuroendocrine neoplasms: historical context and current issues. Semin Diagn Pathol 30(3):186–196. https://doi.org/10.1053/j.semdp.2013.06.005

    Article  PubMed  Google Scholar 

  32. Rietman EA, Platig J, Tuszynski JA, Lakka Klement G (2016) Thermodynamic measures of cancer: Gibbs free energy and entropy of protein-protein interactions. J Biol Phys 42(3):339–350. https://doi.org/10.1007/s10867-016-9410-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meder L, Konig K, Ozretic L, Schultheis AM, Ueckeroth F, Ade CP, Albus K, Boehm D, Rommerscheidt-Fuss U, Florin A, Buhl T, Hartmann W, Wolf J, Merkelbach-Bruse S, Eilers M, Perner S, Heukamp LC, Buettner R (2016) NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas. Int J Cancer 138(4):927–938. https://doi.org/10.1002/ijc.29835

    Article  CAS  PubMed  Google Scholar 

  34. Wick MR, Scheithauer BW (1982) Oat-cell carcinoma of the thymus. Cancer 49(8):1652–1657. https://doi.org/10.1002/1097-0142(19820415)49:8<1652::AID-CNCR2820490820>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  35. Hijioka S, Hosoda W, Matsuo K, Ueno M, Furukawa M, Yoshitomi H, Kobayashi N, Ikeda M, Ito T, Nakamori S, Ishii H, Kodama Y, Morizane C, Okusaka T, Yanagimoto H, Notohara K, Taguchi H, Kitano M, Yane K, Maguchi H, Tsuchiya Y, Komoto I, Tanaka H, Tsuji A, Hashigo S, Kawaguchi Y, Mine T, Kanno A, Murohisa G, Miyabe K, Takagi T, Matayoshi N, Yoshida T, Hara K, Imamura M, Furuse J, Yatabe Y, Mizuno N (2017) Rb loss and KRAS mutation are predictors of the response to platinum-based chemotherapy in pancreatic neuroendocrine neoplasm with grade 3: a Japanese multicenter pancreatic NEN-G3 study. Clin Cancer Res 23(16):4625–4632. https://doi.org/10.1158/1078-0432.CCR-16-3135

    Article  CAS  PubMed  Google Scholar 

  36. Jones MH, Virtanen C, Honjoh D, Miyoshi T, Satoh Y, Okumura S, Nakagawa K, Nomura H, Ishikawa Y (2004) Two prognostically significant subtypes of high-grade lung neuroendocrine tumours independent of small-cell and large-cell neuroendocrine carcinomas identified by gene expression profiles. Lancet 363:775–781

    Article  CAS  PubMed  Google Scholar 

  37. Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:829–848

    Article  CAS  PubMed  Google Scholar 

  38. Ohgaki H, Burger P, Kleihues P (2014) Definition of primary and secondary glioblastoma response. Clin Cancer Res 20(7):2013. https://doi.org/10.1158/1078-0432.CCR-14-0238

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fusco N, Geyer FC, De Filippo MR, Martelotto LG, Ng CK, Piscuoglio S, Guerini-Rocco E, Schultheis AM, Fuhrmann L, Wang L, Jungbluth AA, Burke KA, Lim RS, Vincent-Salomon A, Bamba M, Moritani S, Badve SS, Ichihara S, Ellis IO, Reis-Filho JS, Weigelt B (2016) Genetic events in the progression of adenoid cystic carcinoma of the breast to high-grade triple-negative breast cancer. Mod Pathol 29(11):1292–1305. https://doi.org/10.1038/modpathol.2016.134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Asamura H, Kameya T, Matsuno Y, Noguchi M, Tada H, Ishikawa Y, Yokose T, Jiang SX, Inoue T, Nakagawa K, Tajima K, Nagai K (2006) Neuroendocrine neoplasms of the lung: a prognostic spectrum. J Clin Oncol 24(1):70–76. https://doi.org/10.1200/JCO.2005.04.1202

    Article  PubMed  Google Scholar 

  41. Righi L, Volante M, Tavaglione V, Bille A, Daniele L, Angusti T, Inzani F, Pelosi G, Rindi G, Papotti M (2010) Somatostatin receptor tissue distribution in lung neuroendocrine tumours: a clinicopathologic and immunohistochemical study of 218 ‘clinically aggressive’ cases. Ann Oncol 21(3):548–555. https://doi.org/10.1093/annonc/mdp334

    Article  CAS  PubMed  Google Scholar 

  42. Travis WD, Rush W, Flieder DB, Falk R, Fleming MV, Gal AA, Koss MN (1998) Survival analysis of 200 pulmonary neuroendocrine tumors with clarification of criteria for atypical carcinoid and its separation from typical carcinoid. Am J Surg Pathol 22(8):934–944. https://doi.org/10.1097/00000478-199808000-00003

    Article  CAS  PubMed  Google Scholar 

  43. Nicholson SA, Beasley MB, Brambilla E, Hasleton PS, Colby TV, Sheppard MN, Falk R, Travis WD (2002) Small cell lung carcinoma (SCLC): a clinicopathologic study of 100 cases with surgical specimens. Am J Surg Pathol 26(9):1184–1197. https://doi.org/10.1097/00000478-200209000-00009

    Article  PubMed  Google Scholar 

  44. den Bakker MA, Thunnissen FB (2013) Neuroendocrine tumours—challenges in the diagnosis and classification of pulmonary neuroendocrine tumours. J Clin Pathol 66(10):862–869. https://doi.org/10.1136/jclinpath-2012-201310

    Article  Google Scholar 

  45. den Bakker MA, Willemsen S, Grunberg K, Noorduijn LA, van Oosterhout MF, van Suylen RJ, Timens W, Vrugt B, Wiersma-van Tilburg A, Thunnissen FB (2010) Small cell carcinoma of the lung and large cell neuroendocrine carcinoma interobserver variability. Histopathology 56(3):356–363. https://doi.org/10.1111/j.1365-2559.2010.03486.x

    Article  Google Scholar 

  46. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, Bergethon K, Shaw AT, Gettinger S, Cosper AK, Akhavanfard S, Heist RS, Temel J, Christensen JG, Wain JC, Lynch TJ, Vernovsky K, Mark EJ, Lanuti M, Iafrate AJ, Mino-Kenudson M, Engelman JA (2011) Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 3:75ra26

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is dedicated to the memory of Carlotta, an extraordinarily lively girl who died untimely of cancer in the prime of her life.

Funding

Fabrizio Bianchi (FB), Aldo Scarpa (AS), Sara Pilotto (SP), Emilio Bria (EB) and Marco Volante (MV) were supported by grants from the Italian Association for Cancer Research (AIRC) as follows: FB, MFAG17568; AS, 5x1000 18182; SP and EB, MFAG14282; and MV, MFAG17568, 5x1000 18182 and IG19238. SP was also supported by a fellowship award of the International Association for Lung Cancer (IASLC).

Author information

Authors and Affiliations

Authors

Contributions

GP conceived and designed the study, drafted and finalised the manuscript and shared all statistical analyses; FB carried out clustering analysis, supervised all statistical procedures, shared the study design and contributed to draft and finalise the manuscript; ED performed univariate and multivariate statistical analysis; MS and AM identified the gene signature from the original files; AnSo, SP, SH, MP, MV, GF, LM, AA, FC and EB critically revised the manuscript; AS critically revised and finalised the manuscript. All authors approved the submitted version.

Corresponding author

Correspondence to Giuseppe Pelosi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplemental Figure 1.

A. Supervised clustering analysis of gene alterations across the entire spectrum of Lung-NETs. Different tumours and types of genetic alterations are colour coded as per the legend. TC stands for typical carcinoid, AC for atypical carcinoid, LCNEC for large cell neuroendocrine carcinoma and SCLC for small cell lung carcinoma. B. Survival analysis by Kaplan-Meier plot of tumours stratified by histologic subtyping. (GIF 9 kb)

High resolution image (TIFF 11272 kb)

Supplemental Figure 2.

High-grade NET consistent with SCLC in the cluster C1 (A) showed an intra-tumour compartmentalization of the Ki-67 immunostaining with an intimate admixture of proliferating and non-proliferating tumour cells within the same tumour case. This distribution of tumour cells ruled out a collision tumour and was in agreement with the evolution of a pre-existing carcinoid to high-grade SCLC-like NET (B). (GIF 24 kb)

High resolution image (TIFF 4656 kb)

Supplemental Figure 3

Unsupervised cluster analysis on the data set published by Rekhtman et al. (see reference #8), regarding NGS analysis of a large series of LCNEC of the lung. (GIF 7 kb)

High resolution image (TIFF 9292 kb)

Supplemental Table 1

(DOCX 70 kb)

Supplemental Table 2

(DOCX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelosi, G., Bianchi, F., Dama, E. et al. Most high-grade neuroendocrine tumours of the lung are likely to secondarily develop from pre-existing carcinoids: innovative findings skipping the current pathogenesis paradigm. Virchows Arch 472, 567–577 (2018). https://doi.org/10.1007/s00428-018-2307-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-018-2307-3

Keywords

Navigation