Skip to main content

Advertisement

Log in

Pathologists and liquid biopsies: to be or not to be?

  • Review and Perspectives
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Recently, the advent of therapies targeting genomic alterations has improved the care of patients with certain types of cancer. While molecular targets were initially detected in nucleic acid samples extracted from tumor tissue, detection of nucleic acids in circulating blood has allowed the development of what has become known as liquid biopsies, which provide a complementary and alternative sample source allowing identification of genomic alterations that might be addressed by targeted therapy. Consequently, liquid biopsies might rapidly revolutionize oncology practice in allowing administration of more effective treatments. Liquid biopsies also provide an approach towards short-term monitoring of metastatic cancer patients to evaluate efficacy of treatment and/or early detection of secondary mutations responsible for resistance to treatment. In this context, pathologists, who have already been required in recent years to take interest in the domain of molecular pathology of cancer, now face new challenges. The attitude of pathologists to and level of involvement in the practice of liquid biopsies, including mastering the methods employed in molecular analysis of blood samples, need close attention. Regardless of the level of involvement of pathologists in this new field, it is mandatory that oncologists, biologists, geneticists, and pathologists work together to coordinate the pre-analytical, analytical, and post-analytical phases of molecular assessment of tissue and liquid samples of individual cancer patients. The challenges include (1) implementation of effective and efficient procedures for reception and analysis of liquid and tissue samples for histopathological and molecular evaluation and (2) assuring short turn-around times to facilitate rapid optimization of individual patient treatment. In this paper, we will review the following: (1) recent data concerning the concept of liquid biopsies in oncology and its development for patient care, (2) advantages and limitations of molecular analyses performed on blood samples compared to those performed on tissue samples, and (3) short-term challenges facing pathologists in dealing with liquid biopsies of cancer patients and new strategies to early detect metastatic tumor cell clones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Committee on Policy Issues in the Clinical Development and Use of Biomarkers for Molecularly Targeted Therapies, Board on Health Care Services, Institute of Medicine, The National Academies of Sciences, Engineering, and Medicine; Graig LA, Phillips, JK, Moses, HL, editors. Biomarker tests for molecularly targeted therapies: key to unlocking precision medicine. Washington (DC): National Academies Press (US); 2016.

  2. Prasad V, Fojo T, Brada M (2016) Precision oncology: origins, optimism, and potential. Lancet Oncol 17:e81–e86. doi:10.1016/S1470-2045(15)00620-8

    Article  PubMed  Google Scholar 

  3. Shames DS, Wistuba II (2014) The evolving genomic classification of lung cancer. J Pathol 232:121–133

    Article  CAS  PubMed  Google Scholar 

  4. Al-Zaid T, Somaiah N, Lazar AJ (2014) Targeted therapies for sarcomas: new roles for the pathologist. Histopathology 64:119–133

    Article  PubMed  Google Scholar 

  5. Calabrese F, Lunardi F, Popper H (2015) Molecular diagnosis in lung diseases. Front Biosci (Landmark Ed) 20:644–688

    Article  Google Scholar 

  6. De Hertogh G, Geboes KP (2010) Practical and molecular evaluation of colorectal cancer: new roles for the pathologist in the era of targeted therapy. Arch Pathol Lab Med 134:853–863

    PubMed  Google Scholar 

  7. Dietel M, Sers C (2006) Personalized medicine and development of targeted therapies: the upcoming challenge for diagnostic molecular pathology. A review. Virchows Arch 448:744–755

    Article  PubMed  Google Scholar 

  8. Flynn C, James J, Maxwell P, et al. (2014) Integrating molecular diagnostics into histopathology training: the Belfast model. J Clin Pathol 67:632–636

    Article  CAS  PubMed  Google Scholar 

  9. Tobin NP, Foukakis T, De Petris L, Bergh J (2015) The importance of molecular markers for diagnosis and selection of targeted treatments in patients with cancer. J Intern Med 278:545–570

    Article  CAS  PubMed  Google Scholar 

  10. Crockford A, Jamal-Hanjani M, Hicks J, Swanton C (2014) Implications of intratumour heterogeneity for treatment stratification. J Pathol 232:264–273

    Article  PubMed  Google Scholar 

  11. Jamal-Hanjani M, Quezada SA, Larkin J, Swanton C (2015) Translational implications of tumor heterogeneity. Clin Cancer Res 21:1258–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alix-Panabières C, Pantel K (2013) Circulating tumor cells: liquid biopsy of cancer. Clin Chem 59:110–118

    Article  PubMed  Google Scholar 

  13. Alix-Panabières C, Pantel K (2016) Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov 6:479–491

    Article  PubMed  Google Scholar 

  14. Hofman V, Ilie M, Long E, et al. (2014) Detection of circulating tumor cells from lung cancer patients in the era of targeted therapy: promises, drawbacks and pitfalls. Curr Mol Med 14:440–456

    Article  CAS  PubMed  Google Scholar 

  15. Ilie M, Long E, Hofman V, et al. (2014) Clinical value of circulating endothelial cells and of soluble CD146 levels in patients undergoing surgery for non-small cell lung cancer. Br J Cancer 110:1236–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ilie M, Hofman V, Long E, et al. (2014) Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine? Ann Transl Med 2:107. doi:10.3978/j.issn.2305-5839.2014.08.11

    PubMed  PubMed Central  Google Scholar 

  17. Alix-Panabières C, Pantel K (2014) Technologies for detection of circulating tumor cells: facts and vision. Lab Chip 14:57–62

    Article  PubMed  Google Scholar 

  18. Haber DA, Velculescu VE (2014) Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov 4:650–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heitzer E, Ulz P, Geigl JB (2015) Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem 61:112–123

    Article  CAS  PubMed  Google Scholar 

  20. Ignatiadis M, Dawson SJ (2014) Circulating tumor cells and circulating tumor DNA for precision medicine: dream or reality? Ann Oncol 25:2304–2313

    Article  CAS  PubMed  Google Scholar 

  21. Pantel K, Diaz LA Jr, Polyak K (2013) Tracking tumor resistance using ‘liquid biopsies’. Nat Med 19:676–677

    Article  PubMed  Google Scholar 

  22. Pantel K, Alix-Panabières C (2013) Real-time liquid biopsy in cancer patients: fact or fiction? Cancer Res 73:6384–6388

    Article  CAS  PubMed  Google Scholar 

  23. Pantel K, Speicher MR (2015) The biology of circulating tumor cells. Oncogene. doi:10.1038/onc.2015.192

    PubMed  Google Scholar 

  24. Alix-Panabières C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14:623–631

    Article  PubMed  Google Scholar 

  25. Alix-Panabières C, Bartkowiak K, Pantel K (2016) Functional studies on circulating and disseminated tumor cells in carcinoma patients. Mol Oncol

  26. Pantel K, Alix-Panabières C (2016) Liquid biopsy: potential and challenges. Mol Oncol. doi:10.1016/j.molonc.2016.01.009

    Google Scholar 

  27. Pantel K, Alix-Panabières C (2016) Functional studies on viable circulating tumor cells. Clin Chem 62:328–334

    Article  CAS  PubMed  Google Scholar 

  28. Schlange T, Pantel K (2016) Potential of circulating tumor cells as blood-based biomarkers in cancer liquid biopsy. Pharmacogenomics 17:183–186

    Article  CAS  PubMed  Google Scholar 

  29. Bozec A, Ilie M, Dassonville O, et al. (2013) Significance of circulating tumor cell detection using the CellSearch system in patients with locally advanced head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 270:2745–2749

    Article  PubMed  Google Scholar 

  30. Doyen J, Alix-Panabières C, Hofman P, et al. (2012) Circulating tumor cells in prostate cancer: a potential surrogate marker of survival. Crit Rev Oncol Hematol 81:241–256

    Article  PubMed  Google Scholar 

  31. Hofman V, Ilie MI, Long E, et al. (2011) Detection of circulating tumor cells as a prognostic factor in patients undergoing radical surgery for non-small-cell lung carcinoma: comparison of the efficacy of the CellSearch Assay™ and the isolation by size of epithelial tumor cell method. Int J Cancer 129:1651–1660

    Article  CAS  PubMed  Google Scholar 

  32. Ferreira MM, Ramani VC, Jeffrey SS (2016) Circulating tumor cell technologies. Mol Oncol 10:374–394

    Article  CAS  PubMed  Google Scholar 

  33. Hofman VJ, Ilie M, Hofman PM (2015) Detection and characterization of circulating tumor cells in lung cancer: why and how? Cancer Cytopathol. doi:10.1002/cncy.21651

    PubMed  Google Scholar 

  34. Paterlini-Brechot P, Benali NL (2007) Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett 253:180–204

    Article  CAS  PubMed  Google Scholar 

  35. Morrow CJ, Trapani F, Metcalf RL, et al (2016) Tumourigenic non-small-cell lung cancer mesenchymal circulating tumour cells: a clinical case study. Ann Oncol

    Google Scholar 

  36. Pantel K, Denève E, Nocca D, et al. (2012) Circulating epithelial cells in patients with benign colon diseases. Clin Chem 58(5):936–940

    Article  CAS  PubMed  Google Scholar 

  37. Joosse SA, Pantel K (2013) Biologic challenges in the detection of circulating tumor cells. Cancer Res 73:8–11

    Article  CAS  PubMed  Google Scholar 

  38. Brouwer A, De Laere B, Peeters D, et al. (2016) Evaluation and consequences of heterogeneity in the circulating tumor cell compartment. Oncotarget. doi:10.18632/oncotarget.8015

    PubMed  Google Scholar 

  39. Paoletti C, Hayes DF (2016) Circulating tumor cells. Adv Exp Med Biol 882:235–258

    Article  PubMed  Google Scholar 

  40. Hofman V, Long E, Ilie M, et al. (2012) Morphological analysis of circulating tumour cells in patients undergoing surgery for non-small cell lung carcinoma using the isolation by size of epithelial tumour cell (ISET) method. Cytopathology 23:30–38

    Article  CAS  PubMed  Google Scholar 

  41. Hofman VJ, Ilie MI, Bonnetaud C, et al. (2011) Cytopathologic detection of circulating tumor cells using the isolation by size of epithelial tumor cell method: promises and pitfalls. Am J Clin Pathol 135:146–156

    Article  PubMed  Google Scholar 

  42. Hofman V, Bonnetaud C, Ilie MI, et al. (2011) Preoperative circulating tumor cell detection using the isolation by size of epithelial tumor cell method for patients with lung cancer is a new prognostic biomarker. Clin Cancer Res 17:827–835

    Article  CAS  PubMed  Google Scholar 

  43. Long E, Ilie M, Bence C, et al. (2016) High expression of TRF2, SOX10, and CD10 in circulating tumor microemboli detected in metastatic melanoma patients. A potential impact for the assessment of disease aggressiveness. Cancer Med. doi:10.1002/cam4.661

    Google Scholar 

  44. Lianidou ES (2016) Gene expression profiling and DNA methylation analyses of CTCs. Mol Oncol 10:431–442

    Article  CAS  PubMed  Google Scholar 

  45. Wicha MS, Hayes DF (2011) Circulating tumor cells: not all detected cells are bad and not all bad cells are detected. J Clin Oncol 29:1508–1511

    Article  PubMed  Google Scholar 

  46. Hodgkinson CL, Morrow CJ, Li Y, et al. (2014) Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med 20:897–903

    Article  CAS  PubMed  Google Scholar 

  47. Normanno N, De Luca A, Gallo M, Chicchinelli N, Rossi A (2016) The prognostic role of circulating tumor cells in lung cancer. Expert Rev Anticancer Ther 16:859–867

    Article  CAS  PubMed  Google Scholar 

  48. Cai X, Janku F, Zhan Q, Fan JB (2015) Accessing genetic information with liquid biopsies. Trends Genet 31:564–575

    Article  CAS  PubMed  Google Scholar 

  49. Gezer U, Mert U, Ozgür E, Yörüker EE, Holdenrieder S, Dalay N (2012) Correlation of histone methyl marks with circulating nucleosomes in blood plasma of cancer patients. Oncol Lett 3:1095–1098

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J (2016) Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164:57–68

    Article  CAS  PubMed  Google Scholar 

  51. Bordi P, Del Re M, Danesi R, Tiseo M (2015) Circulating DNA in diagnosis and monitoring EGFR gene mutations in advanced non-small cell lung cancer. Transl Lung Cancer Res 4:584–597

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tan CS, Cho BC, Soo RA (2016) Next-generation epidermal growth factor receptor tyrosine kinase inhibitors in epidermal growth factor receptor-mutant non-small cell lung cancer. Lung Cancer 93:59–68

    Article  PubMed  Google Scholar 

  53. Chang GA, Tadepalli JS, Shao Y, et al. (2016) Sensitivity of plasma BRAF (mutant) and NRAS(mutant) cell-free DNA assays to detect metastatic melanoma in patients with low RECIST scores and non-RECIST disease progression. Mol Oncol 10:157–165

    Article  CAS  PubMed  Google Scholar 

  54. De Mattos-Arruda L, Caldas C (2015) Cell-free circulating tumour DNA as a liquid biopsy in breast cancer. Mol Oncol. doi:10.1016/j.molonc.2015.12.001

    PubMed  Google Scholar 

  55. Diaz LA Jr, Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32:579–586

    Article  PubMed  PubMed Central  Google Scholar 

  56. Molina-Vila MA, de-Las-Casas CM, Bertran-Alamillo J, Jordana-Ariza N, González-Cao M, Rosell R (2015) cfDNA analysis from blood in melanoma. Ann Transl Med 3:309. doi:10.3978/j.issn.2305-5839.2015.11.23

    PubMed  PubMed Central  Google Scholar 

  57. Schiavon G, Hrebien S, Garcia-Murillas I, et al. (2015) Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci Transl Med 7:313ra182

    Article  PubMed  PubMed Central  Google Scholar 

  58. Schwaederle M, Husain H, Fanta PT, et al. (2016) Detection rate of actionable mutations in diverse cancers using a biopsy-free (blood) circulating tumor cell DNA assay. Oncotarget. doi:10.18632/oncotarget.7110

    PubMed Central  Google Scholar 

  59. Siravegna G, Bardelli A (2015) Blood circulating tumor DNA for non-invasive genotyping of colon cancer patients. Mol Oncol 10:475–480

    Article  PubMed  Google Scholar 

  60. Schreuer M, Meersseman G, Van Den Herrewegen S, et al. (2016) Quantitative assessment of BRAF V600 mutant circulating cell-free tumor DNA as a tool for therapeutic monitoring in metastatic melanoma patients treated with BRAF/MEK inhibitors. J Transl Med 14:95. doi:10.1186/s12967-016-0852-

    Article  PubMed  PubMed Central  Google Scholar 

  61. Benesova L, Belsanova B, Suchanek S (2013) Mutation-based detection and monitoring of cell-free tumor DNA in peripheral blood of cancer patients. Anal Biochem 433:227–234

    Article  CAS  PubMed  Google Scholar 

  62. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A (2013) Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 10:472–484

    Article  CAS  PubMed  Google Scholar 

  63. Diehl F, Schmidt K, Choti MA, et al. (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 2008(14):985–890

    Article  Google Scholar 

  64. Esposito A, Criscitiello C, Locatelli M, Milano M, Curigliano G (2016) Liquid biopsies for solid tumors: understanding tumor heterogeneity and real time monitoring of early resistance to targeted therapies. Pharmacol Ther 157:120–124

    Article  CAS  PubMed  Google Scholar 

  65. Huang SK, Hoon DS (2015) Liquid biopsy utility for the surveillance of cutaneous malignant melanoma patients. Mol Oncol. doi:10.1016/j.molonc.2015.12.008

    Google Scholar 

  66. Lianos GD, Mangano A, Kouraklis G, Roukos DH (2014) Dynamic sequencing of circulating tumor DNA: novel noninvasive cancer biomarker. Biomark Med 8:629–632

    Article  CAS  PubMed  Google Scholar 

  67. Marzese DM, Hirose H, Hoon DS (2013) Diagnostic and prognostic value of circulating tumor-related DNA in cancer patients. Expert Rev Mol Diagn 13:827–844

    Article  CAS  PubMed  Google Scholar 

  68. Siravegna G, Bardelli A (2014) Genotyping cell-free tumor DNA in the blood to detect residual disease and drug resistance. Genome Biol 15:449

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tissot C, Toffart AC, Villar S, et al. (2015) Circulating free DNA concentration is an independent prognostic biomarker in lung cancer. Eur Respir J 46:1773–1780

    Article  CAS  PubMed  Google Scholar 

  70. Nilsson RJ, Karachaliou N, Berenguer J, et al. (2016) Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer. Oncotarget 7(1):1066–1075

    PubMed  Google Scholar 

  71. Schwarzenbach H, Nishida N, Calin GA, Pantel K (2014) Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 11:145–156

    Article  CAS  PubMed  Google Scholar 

  72. Pinzani P, Salvianti F, Orlando C, Pazzagli M (2014) Circulating cell-free DNA in cancer. Methods Mol Biol 1160:133–145

    Article  CAS  PubMed  Google Scholar 

  73. Newman AM, Bratman SV, To J, et al. (2014) An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20:548–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sacher AG, Paweletz C, Dahlberg SE, et al. (2016) Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol. doi:10.1001/jamaoncol.2016.0173

    PubMed Central  Google Scholar 

  75. Sundaresan TK, Sequist LV, Heymach JV, et al. (2016) Detection of T790M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive blood-based analyses. Clin Cancer Res 22:1103–1110

    Article  CAS  PubMed  Google Scholar 

  76. Thress KS, Brant R, Carr TH, et al. (2015) EGFR mutation detection in ctDNA from NSCLC patient plasma: a cross-platform comparison of leading technologies to support the clinical development of AZD9291. Lung Cancer 90:509–515

    Article  PubMed  Google Scholar 

  77. Watanabe M, Kawaguchi T, Isa S, et al. (2015) Ultra-sensitive detection of the pretreatment EGFR T790M mutation in non-small cell lung cancer patients with an EGFR-activating mutation using droplet digital PCR. Clin Cancer Res 21:3552–3560

    Article  CAS  PubMed  Google Scholar 

  78. Long-Mira E, Washetine K, Hofman P (2016) Sense and nonsense in the process of accreditation of a pathology laboratory. Virchows Arch 468:43–49

    Article  PubMed  Google Scholar 

  79. Tembuyser L, Dequeker EM (2016) Endorsing good quality assurance practices in molecular pathology: risks and recommendations for diagnostic laboratories and external quality assessment providers. Virchows Arch 468:31–41

    Article  PubMed  Google Scholar 

  80. Gray ES, Rizos H, Reid AL, et al. (2015) Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. Oncotarget 6:42008–41018

    PubMed  PubMed Central  Google Scholar 

  81. Meador CB, Lovly CM (2015) Liquid biopsies reveal the dynamic nature of resistance mechanisms in solid tumors. Nat Med 21:663–665

    Article  CAS  PubMed  Google Scholar 

  82. Hofman V, Ilie M, Long-Mira E, et al. (2013) Usefulness of immunocytochemistry for the detection of the BRAF(V600E) mutation in circulating tumor cells from metastatic melanoma patients. J Invest Dermatol 133:1378–1381. doi:10.1038/jid.2012.485

    Article  CAS  PubMed  Google Scholar 

  83. Ilie M, Long E, Butori C, Hofman V, et al. (2012) ALK-gene rearrangement: a comparative analysis on circulating tumour cells and tumour tissue from patients with lung adenocarcinoma. Ann Oncol 23:2907–2913

    Article  CAS  PubMed  Google Scholar 

  84. Ilie M, Hofman V, Long E, et al. (2016) PD-L1 expression in primary tumor and circulating tumor cells in patients with small cell lung carcinomas. AACR, New Orleans abstract N°

  85. Ilie M, Szafer-Glusman E, Hofman V, et al (2016) PD-L1 expression in primary tumor and circulating tumor cells in patients with advanced non-small cell lung cancer. Virchows Archiv ECP abstract N°. XXI International Congress of the International Academy of Pathology and 28 th Congress of the European Society of Pathology, Cologne, Germany. Thoracic Pathology OFP-13, 003. Virchow Archivs 2016, in press

  86. Pailler E, Auger N, Lindsay CR, et al. (2015) High level of chromosomal instability in circulating tumor cells of ROS1-rearranged non-small-cell lung cancer. Ann Oncol 26:1408–1415

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ilie M, Hofman V, Long-Mira E, et al. (2014) “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS One 9:e111597. doi:10.1371/journal.pone.0111597

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hofman P (2015) Search for circulating tumor cells: seriously, a real cancer screening tool? J Mal Vasc 40:335–337

    Article  CAS  PubMed  Google Scholar 

  89. Jamal-Hanjani M, Wilson GA, Horswell S, et al. (2016) Detection of ubiquitous and heterogeneous mutations in cell-free DNA from patients with early-stage non-small-cell lung cancer. Ann Oncol 27:862–867

    Article  CAS  PubMed  Google Scholar 

  90. Montani F, Marzi MJ, Dezi F, et al. (2015) miR-Test: a blood test for lung cancer early detection. J Natl Cancer Inst 107:djv063. doi:10.1093/jnci/djv063

    Article  PubMed  Google Scholar 

  91. Lebofsky R, Decraene C, Bernard V, et al. (2015) Circulating tumor DNA as a non-invasive substitute to metastasis biopsy for tumor genotyping and personalized medicine in a prospective trial across all tumor types. Mol Oncol 9:783–790

    Article  CAS  PubMed  Google Scholar 

  92. Tsui DW, Berger MF (2016) Profiling non-small cell lung cancer: from tumor to blood. Clin Cancer Res 22:790–792

    Article  CAS  PubMed  Google Scholar 

  93. Ziegler A, Zangemeister-Wittke U, Stahel RA (2002) Circulating DNA: a new diagnostic gold mine? Cancer Treat Rev 28:255–271

    Article  CAS  PubMed  Google Scholar 

  94. Salgia R (2015) Diagnostic challenges in non-small-cell lung cancer: an integrated medicine approach. Future Oncol 11:489–500

    Article  CAS  PubMed  Google Scholar 

  95. Schumacher TN, Scheper W (2016) A liquid biopsy for cancer immunotherapy. Nat Med 22:340–341

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Hofman.

Ethics declarations

The authors declare to respect all ethical standards.

Funding

None

Conflict of interest

PH declares receiving honoraria from pharmaceutical (AstraZeneca, Roche, Novartis, Bristol Myers Squibb, MSD) and biotechnology (Qiagen, Janssen, Biocartis) companies for advisory board meetings. HP declares receiving honoraria from pharmaceutical companies for advisory board meeting and also unrestricted grants for research (Bristol Myers Squibb, Eli Lilly, Roche, Boehringer-Ingelheim, Astra Zeneca, Novartis).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofman, P., Popper, H.H. Pathologists and liquid biopsies: to be or not to be?. Virchows Arch 469, 601–609 (2016). https://doi.org/10.1007/s00428-016-2004-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-016-2004-z

Keywords

Navigation