Skip to main content

Advertisement

Log in

Pulmonary mucinous adenocarcinomas: architectural patterns in correlation with genetic changes, prognosis and survival

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Of pulmonary adenocarcinomas, about 25–30 % of cases is of a mucinous type. Mucinous adenocarcinomas are regarded as more aggressive compared to their non-mucinous counterparts. Invasive mucinous adenocarcinoma, colloid, and enteric adenocarcinomas are variants within adenocarcinomas. We investigated 76 invasive mucinous adenocarcinomas, including colloid variants, for predominant and secondary patterns, their different form of mucin storage and release, expression of cytokeratin 7 and 20, TTF1 and CDX2, MUC1, 2, and 5AC proteins, p14 and p16 proteins, possible rearrangements for EML4ALK and ROS1, as well as KRAS mutational status, and correlated this with survival. For comparison, 259 non-mucinous adenocarcinomas were selected. Overall survival for invasive mucinous adenocarcinomas corrected for T and N stage was not different from their non-mucinous counterpart. Most were of an acinar pattern. Neither pattern, nor type of mucin storage and release, such as luminal, extracellular, or goblet cell type had any influence on survival. Of adenocarcinomas expressing CK20, all but one expressed TTF1 either strongly or at least focally, and 8 co-expressed CDX2 focally. Most mucinous adenocarcinomas expressed either MUC1 or MUC5AC proteins, but rarely MUC2, while a few cases co-expressed both or all three. Loss of p16 expression correlated with worse outcome. KRAS mutation was found in 56 % of mucinous adenocarcinomas. Mutational status was neither correlated with architectural pattern nor survival. Codon 12 mutations were most frequent, and one case presented with KRAS mutations in codon 12 and 61. Goblet cell variants of mucinous adenocarcinomas presented predominantly with codon 12 mutations, while all colloid variants had KRAS mutation. Two cases had EML4 and ALK1 rearranged; ROS1 rearrangement was not found. Mucinous adenocarcinomas behave similar to non-mucinous variants. TNM stage is the most important factor followed by p16 loss predicting overall survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Carretta A, Canneto B, Calori G, Ceresoli GL, Campagnoli E, Arrigoni G, Vagani A, Zannini P (2001) Evaluation of radiological and pathological prognostic factors in surgically-treated patients with bronchoalveolar carcinoma. Eur J Cardiothorac Surg 20:367–371

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Thai P, Zhao YH, Ho YS, DeSouza MM, Wu R (2003) Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J Biol Chem 278:17036–17043

    Article  CAS  PubMed  Google Scholar 

  3. Copin MC, Buisine MP, Devisme L, Leroy X, Escande F, Gosselin B, Aubert JP, Porchet N (2001) Normal respiratory mucosa, precursor lesions and lung carcinomas: differential expression of human mucin genes. Front Biosci 6:D1264–D1275

    Article  CAS  PubMed  Google Scholar 

  4. Dabbagh K, Takeyama K, Lee HM, Ueki IF, Lausier JA, Nadel JA (1999) IL-4 induces mucin gene expression and goblet cell metaplasia in vitro and in vivo. J Immunol 162:6233–6237

    CAS  PubMed  Google Scholar 

  5. Dacic S, Shuai Y, Yousem S, Ohori P, Nikiforova M (2010) Clinicopathological predictors of EGFR/KRAS mutational status in primary lung adenocarcinomas. Mod Pathol 23:159–168

    Article  CAS  PubMed  Google Scholar 

  6. Dammrich J, Vollmers H, Silber R, Buchwald J, Papadopoulos T, Mullerhermelink H (1997) Postoperative prognosis of pulmonary adenocarcinoma subtypes correlates with HLA-DR expression and the number of tumor-infiltrating cells. Oncol Rep 4:59–64

    CAS  PubMed  Google Scholar 

  7. Grabner B, Schramek D, Mueller KM, Moll HP, Svinka J, Hoffmann T, Bauer E, Blaas L, Hruschka N, Zboray K, Stiedl P, Nivarthi H, Bogner E, Gruber W, Mohr T, Zwick RH, Kenner L, Poli V, Aberger F, Stoiber D, Egger G, Esterbauer H, Zuber J, Moriggl R, Eferl R, Gyorffy B, Penninger JM, Popper H, Casanova E (2015) Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat Commun 6:6285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hansen J (1998) Common cancers in the elderly. Drugs Aging 13:467–478

    Article  CAS  PubMed  Google Scholar 

  9. Harkema JR, Wagner JG (2002) Non-allergic models of mucous cell metaplasia and mucus hypersecretion in rat nasal and pulmonary airways. Novartis Found Symp 248:181–197, discussion 197-200, 277-182

    Article  PubMed  Google Scholar 

  10. Kato T, Ishikawa K, Aragaki M, Sato M, Okamoto K, Ishibashi T, Kaji M (2012) Angiolymphatic invasion exerts a strong impact on surgical outcomes for stage I lung adenocarcinoma, but not non-adenocarcinoma. Lung Cancer 77:394–400

    Article  PubMed  Google Scholar 

  11. Kunii R, Jiang S, Hasegawa G, Yamamoto T, Umezu H, Watanabe T, Tsuchida M, Hashimoto T, Hamakubo T, Kodama T, Sasai K, Naito M (2011) The predominant expression of hepatocyte nuclear factor 4alpha (HNF4alpha) in thyroid transcription factor-1 (TTF-1)-negative pulmonary adenocarcinoma. Histopathology 58:467–476

    Article  PubMed  Google Scholar 

  12. Licciulli S, Avila JL, Hanlon L, Troutman S, Cesaroni M, Kota S, Keith B, Simon MC, Pure E, Radtke F, Capobianco AJ, Kissil JL (2013) Notch1 is required for Kras-induced lung adenocarcinoma and controls tumor cell survival via p53. Cancer Res 73:5974–5984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Louahed J, Toda M, Jen J, Hamid Q, Renauld JC, Levitt RC, Nicolaides NC (2000) Interleukin-9 upregulates mucus expression in the airways. Am J Respir Cell Mol Biol 22:649–656

    Article  CAS  PubMed  Google Scholar 

  14. Maeshima A, Miyagi A, Hirai T, Nakajima T (1997) Mucin-producing adenocarcinoma of the lung, with special reference to goblet cell type adenocarcinoma: immunohistochemical observation and Ki-ras gene mutation. Pathol Int 47:454–460

    Article  CAS  PubMed  Google Scholar 

  15. McWilliams A, MacAulay C, Gazdar AF, Lam S (2002) Innovative molecular and imaging approaches for the detection of lung cancer and its precursor lesions. Oncogene 21:6949–6959

    Article  CAS  PubMed  Google Scholar 

  16. Mesquita P, Almeida R, Van Seuningen I, David L (2004) Coordinated expression of MUC2 and CDX-2 in mucinous carcinomas of the lung can be explained by the role of CDX-2 as transcriptional regulator of MUC2. Am J Surg Pathol 28:1254–1255

    Article  PubMed  Google Scholar 

  17. Musteanu M, Blaas L, Zenz R, Svinka J, Hoffmann T, Grabner B, Schramek D, Kantner HP, Muller M, Kolbe T, Rulicke T, Moriggl R, Kenner L, Stoiber D, Penninger JM, Popper H, Casanova E, Eferl R (2012) A mouse model to identify cooperating signaling pathways in cancer. Nat Methods 9:897–900

    Article  CAS  PubMed  Google Scholar 

  18. Park KS, Korfhagen TR, Bruno MD, Kitzmiller JA, Wan H, Wert SE, Khurana Hershey GK, Chen G, Whitsett JA (2007) SPDEF regulates goblet cell hyperplasia in the airway epithelium. J Clin Invest 117:978–988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Pelizzoli R, Tacchetti C, Luzzi P, Strangio A, Bellese G, Zappia E, Guazzi S (2008) TTF-1/NKX2.1 up-regulates the in vivo transcription of nestin. Int J Dev Biol 52:55–62

    Article  CAS  PubMed  Google Scholar 

  20. Rice SJ, Lai SC, Wood LW, Helsley KR, Runkle EA, Winslow MM, Mu D (2013) MicroRNA-33a mediates the regulation of high mobility group AT-hook 2 gene (HMGA2) by thyroid transcription factor 1 (TTF-1/NKX2-1). J Biol Chem 288:16348–16360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Riely GJ, Johnson ML, Medina C, Rizvi NA, Miller VA, Kris MG, Pietanza MC, Azzoli CG, Krug LM, Pao W, Ginsberg MS (2011) A phase II trial of Salirasib in patients with lung adenocarcinomas with KRAS mutations. J Thorac Oncol 6:1435–1437

    Article  PubMed  Google Scholar 

  22. Riquet M, Foucault C, Berna P, Assouad J, Dujon A, Danel C (2006) Prognostic value of histology in resected lung cancer with emphasis on the relevance of the adenocarcinoma subtyping. Ann Thorac Surg 81:1988–1995

    Article  PubMed  Google Scholar 

  23. Rose MC, Piazza FM, Chen YA, Alimam MZ, Bautista MV, Letwin N, Rajput B (2000) Model systems for investigating mucin gene expression in airway diseases. J Aerosol Med 13:245–261

    Article  CAS  PubMed  Google Scholar 

  24. Rossi G, Murer B, Cavazza A, Losi L, Natali P, Marchioni A, Migaldi M, Capitanio G, Brambilla E (2004) Primary mucinous (so-called colloid) carcinomas of the lung: a clinicopathologic and immunohistochemical study with special reference to CDX-2 homeobox gene and MUC2 expression. Am J Surg Pathol 28:442–452

    Article  PubMed  Google Scholar 

  25. Sakamoto H, Shimizu J, Horio Y, Ueda R, Takahashi T, Mitsudomi T, Yatabe Y (2007) Disproportionate representation of KRAS gene mutation in atypical adenomatous hyperplasia, but even distribution of EGFR gene mutation from preinvasive to invasive adenocarcinomas. J Pathol 212:287–294

    Article  CAS  PubMed  Google Scholar 

  26. Sakuma Y, Matsukuma S, Yoshihara M, Nakamura Y, Noda K, Nakayama H, Kameda Y, Tsuchiya E, Miyagi Y (2007) Distinctive evaluation of nonmucinous and mucinous subtypes of bronchioloalveolar carcinomas in EGFR and K-ras gene-mutation analyses for Japanese lung adenocarcinomas: confirmation of the correlations with histologic subtypes and gene mutations. Am J Clin Pathol 128:100–108

    Article  CAS  PubMed  Google Scholar 

  27. Sato K, Ueda Y, Shikata H, Katsuda S (2006) Bronchioloalveolar carcinoma of mixed mucinous and nonmucinous type: immunohistochemical studies and mutation analysis of the p53 gene. Pathol Res Pract 202:751–756

    Article  CAS  PubMed  Google Scholar 

  28. Shah RN, Badve S, Papreddy K, Schindler S, Laskin WB, Yeldandi AV (2002) Expression of cytokeratin 20 in mucinous bronchioloalveolar carcinoma. Hum Pathol 33:915–920

    Article  CAS  PubMed  Google Scholar 

  29. Smit EF, Dingemans AM, Thunnissen FB, Hochstenbach MM, van Suylen RJ, Postmus PE (2010) Sorafenib in patients with advanced non-small cell lung cancer that harbor K-ras mutations: a brief report. J Thorac Oncol 5:719–720

    Article  PubMed  Google Scholar 

  30. Snyder EL, Watanabe H, Magendantz M, Hoersch S, Chen TA, Wang DG, Crowley D, Whittaker CA, Meyerson M, Kimura S, Jacks T (2013) Nkx2-1 represses a latent gastric differentiation program in lung adenocarcinoma. Mol Cell 50:185–199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Stacher E, Ullmann R, Halbwedl I, Gogg-Kammerer M, Boccon-Gibod L, Nicholson AG, Sheppard MN, Carvalho L, Franca MT, Macsweeney F, Morresi-Hauf A, Popper HH (2004) Atypical goblet cell hyperplasia in congenital cystic adenomatoid malformation as a possible preneoplasia for pulmonary adenocarcinoma in childhood: a genetic analysis. Hum Pathol 35:565–570

    Article  CAS  PubMed  Google Scholar 

  32. Takeyama K, Dabbagh K, Lee HM, Agusti C, Lausier JA, Ueki IF, Grattan KM, Nadel JA (1999) Epidermal growth factor system regulates mucin production in airways. Proc Natl Acad Sci U S A 96:3081–3086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Thunnissen FB, Prinsen C, Hol B, Van der Drift M, Vesin A, Brambilla C, Montuenga L, Field JK (2012) Smoking history and lung carcinoma: KRAS mutation is an early hit in lung adenocarcinoma development. Lung Cancer 75:156–160

    Article  CAS  PubMed  Google Scholar 

  34. Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG (2015) WHO classification of tumours of the lung, pleura, thymus and heart. IARC, WHO Press, Geneva

    Google Scholar 

  35. Travis WD, Brambilla E, Müller-Hermelink HK, Harris CC (2004) Pathology and genetics of tumours of the lung, pleura, thymus and heart IARC WHO classification of tumours. IARC Press, Lyon, 10

    Google Scholar 

  36. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger K, Yatabe Y, Powell CA, Beer D, Riely G, Garg K, Austin JH, Rusch VW, Hirsch FR, Jett J, Yang PC, Gould M (2011) International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma: executive summary. Proc Am Thorac Soc 8:381–385

    Article  PubMed  Google Scholar 

  37. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, Beer DG, Powell CA, Riely GJ, Van Schil PE, Garg K, Austin JH, Asamura H, Rusch VW, Hirsch FR, Scagliotti G, Mitsudomi T, Huber RM, Ishikawa Y, Jett J, Sanchez-Cespedes M, Sculier JP, Takahashi T, Tsuboi M, Vansteenkiste J, Wistuba I, Yang PC, Aberle D, Brambilla C, Flieder D, Franklin W, Gazdar A, Gould M, Hasleton P, Henderson D, Johnson B, Johnson D, Kerr K, Kuriyama K, Lee JS, Miller VA, Petersen I, Roggli V, Rosell R, Saijo N, Thunnissen E, Tsao M, Yankelewitz D (2011) International association for the study of lung cancer/American thoracic society/European respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6:244–285

    Article  PubMed Central  PubMed  Google Scholar 

  38. Tsuta K, Ishii G, Nitadori J, Murata Y, Kodama T, Nagai K, Ochiai A (2006) Comparison of the immunophenotypes of signet-ring cell carcinoma, solid adenocarcinoma with mucin production, and mucinous bronchioloalveolar carcinoma of the lung characterized by the presence of cytoplasmic mucin. J Pathol 209:78–87

    Article  CAS  PubMed  Google Scholar 

  39. Tsutsumida H, Nomoto M, Goto M, Kitajima S, Kubota I, Hirotsu Y, Wakimoto J, Hollingsworth MA, Yonezawa S (2007) A micropapillary pattern is predictive of a poor prognosis in lung adenocarcinoma, and reduced surfactant apoprotein A expression in the micropapillary pattern is an excellent indicator of a poor prognosis. Mod Pathol 20:638–647

    Article  PubMed  Google Scholar 

  40. Tyczynski JE, Bray F, Parkin DM (2003) Lung cancer in Europe in 2000: epidemiology, prevention, and early detection. Lancet Oncol 4:45–55

    Article  PubMed  Google Scholar 

  41. Wistuba II, Gazdar AF (2006) Lung cancer preneoplasia. Annu Rev Pathol 1:331–348

    Article  CAS  PubMed  Google Scholar 

  42. Yamauchi K, Piao HM, Nakadate T, Shikanai T, Nakamura Y, Ito H, Mouri T, Kobayashi H, Maesawa C, Sawai T, Ohtsu H, Inoue H (2009) Enhanced goblet cell hyperplasia in HDC knockout mice with allergic airway inflammation. Allergol Int 58:125–134

    Article  CAS  PubMed  Google Scholar 

  43. Yatabe Y, Koga T, Mitsudomi T, Takahashi T (2004) CK20 expression, CDX2 expression, K-ras mutation, and goblet cell morphology in a subset of lung adenocarcinomas. J Pathol 203:645–652

    Article  CAS  PubMed  Google Scholar 

  44. Yoshizawa A, Motoi N, Riely GJ, Sima CS, Gerald WL, Kris MG, Park BJ, Rusch VW, Travis WD (2011) Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: prognostic subgroups and implications for further revision of staging based on analysis of 514 stage I cases Mod Pathol

  45. Yoshizawa A, Sumiyoshi S, Sonobe M, Kobayashi M, Fujimoto M, Kawakami F, Tsuruyama T, Travis WD, Date H, Haga H (2013) Validation of the IASLC/ATS/ERS lung adenocarcinoma classification for prognosis and association with EGFR and KRAS gene mutations: analysis of 440 Japanese patients. J Thorac Oncol 8:52–61

    Article  CAS  PubMed  Google Scholar 

  46. Zhang X, Zhang Y, Tao B, Wang D, Cheng H, Wang K, Zhou R, Xie Q, Ke Y (2012) Docking protein Gab2 regulates mucin expression and goblet cell hyperplasia through TYK2/STAT6 pathway. FASEB J 26:4603–4613

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Y, Sun Y, Pan Y, Li C, Shen L, Li Y, Luo X, Ye T, Wang R, Hu H, Li H, Wang L, Pao W, Chen H (2012) Frequency of driver mutations in lung adenocarcinoma from female never-smokers varies with histologic subtypes and age at diagnosis. Clin Cancer Res 18:1947–1953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Addendum

A recently published study by Shim et al. focused also on a similar cohort of mucinous adenocarcinomas. The authors found similar survival data as well as a high prevalence of KRAS mutations, thus confirming our findings. Importantly they had significantly low mutations in TP53, which raises the question which proteins other than p53 cooperates with p16 (J.Thoracic Oncol. 2015 Aug;10(8):1156-62).

Conflict of interest

This investigation was in part supported by an unrestricted grant from Hofman La Roche to HHP. No conflict of interest is to be declared in connection with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut H. Popper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 675 kb)

ESM 2

(JPEG 406 kb)

ESM 3

(DOCX 27 kb)

ESM 4

(DOCX 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geles, A., Gruber-Moesenbacher, U., Quehenberger, F. et al. Pulmonary mucinous adenocarcinomas: architectural patterns in correlation with genetic changes, prognosis and survival. Virchows Arch 467, 675–686 (2015). https://doi.org/10.1007/s00428-015-1852-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-015-1852-2

Keywords

Navigation