Skip to main content

Advertisement

Log in

Co-expression of receptors of the HER family correlates with clinical outcome in non-small cell lung cancer (NSCLC)

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

HER family receptors play a critical role in lung carcinogenesis. There is a growing body of evidence showing that cooperation between them contributes to a more aggressive tumor phenotype and impacts on their response to targeted therapy. We explored immunohistochemical co-expression of HER family receptors (HER1, HER2, HER3, HER4) and its potential role as prognostic factor in resected non-small cell lung cancer (NSCLC). Expression of HER family receptors was assessed by immunohistochemistry on 125 surgically resected NSCLC. Kaplan–Meier estimates of overall survival (OS), disease-free survival (DFS), and time to recurrence were calculated for clinical variables and HER expression, using the Cox model for multivariate analysis. HER1 and HER3 expression was detected more frequently in squamous cell carcinoma (p = 0.002 and p = <0.001, respectively). HER4 was more often expressed in patients older than 60 years (p = 0.02) and in tumors of low histological grade (p = 0.04). Cases which expressed only HER1 had a worse DFS (p = 0.01) and OS (p = 0.01) compared to cases expressing HER1 and one or more of the other family members and to cases which did not express HER1 but one of the other HERs. By multivariate analysis, stage was an independent prognostic factor for DFS and OS. Furthermore, different patterns of co-expression of HER family receptors showed a statistically significant correlation with a shorter DFS (p = 0.03) and OS (p = 0.02). Our findings suggest that expression of HER1 only is correlated with worse DFS and OS. A better understanding of the functional relationships between these receptors may lead to a useful predictive indicator of response to targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E et al (2008) Cancer statistics. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  2. Herbst RS, Heymach JV, Lippman SM (2008) Lung cancer. N Engl J Med 359:1367–1380

    Article  PubMed  CAS  Google Scholar 

  3. Lynch TJ, Bonomi PD, Butts C et al (2007) Novel agents in the treatment of lung cancer: Fourth Cambridge Conference. Clin Cancer Res 13:s4583–s4588

    Article  PubMed  Google Scholar 

  4. Kumar A, Petri ET, Halmos B, Boggon TJ (2008) Structure and clinical relevance of the epidermal growth factor receptor in human cancer. J Clin Oncol 26:1742–1751

    Article  PubMed  CAS  Google Scholar 

  5. Bazley LA, Gullick WJ (2005) The epidermal growth factor family. Endocr Relat Cancer 12(suppl. 1):S17–S27

    Google Scholar 

  6. Del Sordo R, Angiero F, Bellezza G et al (2010) HER family receptors expression in squamous cell carcinoma of the tongue: study of the possible prognostic and biological significance. J Oral Pathol Med 39:79–86

    Article  PubMed  Google Scholar 

  7. Barros FFT, Powe DG, Ellis IO, Green AR (2010) Understanding the HER family in breast cancer: interaction with ligands, dimerization and treatments. Histopathology 56:560–572

    Article  PubMed  Google Scholar 

  8. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125:1137–1149

    Article  PubMed  CAS  Google Scholar 

  9. Hsieh AC, Moasser MM (2007) Targeting HER proteins in cancer therapy and the role of the non-target HER3. Br J Cancer 97:453–457

    Article  PubMed  CAS  Google Scholar 

  10. Graus-Porta D, Beerli RR, Daly JM, Hynes NE (1997) ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 16:1647–1655

    Article  PubMed  CAS  Google Scholar 

  11. Bromberg J (2002) Stat proteins and oncogenesis. J Clin Invest 109:1139–1142

    PubMed  CAS  Google Scholar 

  12. Herbst RS, Shin DM (2002) Monoclonal antibodies to target epidermal growth factor receptor-positive tumors: a new paradigm for cancer therapy. Cancer 94:1593–1611

    Article  PubMed  CAS  Google Scholar 

  13. Ludovini V, Bellezza G, Pistola L et al (2009) High coexpression of both insulin-like growth factor receptor-1 (IGFR-1) and epidermal growth factor receptor (EGFR) is associated with shorter disease-free survival in resected non-small-cell lung cancer patients. Ann Oncol 20:842–849

    Article  PubMed  CAS  Google Scholar 

  14. Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  PubMed  CAS  Google Scholar 

  15. Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  PubMed  CAS  Google Scholar 

  16. Hirsch FR, Franklin WA, Veve R, Varella-Garcia M, Bunn PA Jr (2002) HER2/neu expression in malignant lung tumors. Semin Oncol 29:51–58

    Article  PubMed  CAS  Google Scholar 

  17. Tsai CM, Chang KT, Wu LH et al (1996) Correlation between intrinsic chemoresistence and HER2/neu gene expression, p53 mutations and cell proliferation characteristics in non-small cell lung cancer cell lines. Cancer Res 56:206–209

    PubMed  CAS  Google Scholar 

  18. Sithanandam G, Anderson LM (2008) The ERBB3 receptor in cancer and cancer gene therapy. Cancer Gene Ther 15:413–448

    Article  PubMed  CAS  Google Scholar 

  19. Engelman JA, Cantley LC (2006) The role of the ErbB family members in non-small cell lung cancers sensitive to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res 12:4372–4376

    Article  Google Scholar 

  20. Starr A, Greif J, Vexler A et al (2006) ErbB4 increases the proliferation potential of human lung cancer cells and its blockage can be used as a target for anti-cancer therapy. Int J Cancer 119:269–274

    Article  PubMed  CAS  Google Scholar 

  21. Wissner A, Monsour TS (2008) The development of HKI-272 and related compounds for the treatment of cancer. Arch Pharm (Weinheim) 341:465–477

    Article  CAS  Google Scholar 

  22. Engelman JA, Zejnullahu K, Gale CM et al (2007) PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res 67:11924–11932

    Article  PubMed  CAS  Google Scholar 

  23. Hirsch FR, Varella-Garcia M, Capuzzo F (2009) Predictive value of EGFR and HER2 overexpression in advanced non-small-cell lung cancer. Oncogene 28:s32–s37

    Article  PubMed  CAS  Google Scholar 

  24. Cagle PT, Chirieac LR (2012) Advances in treatment of lung cancer with target therapy. Arch Pathol Lab Med 136:504–509

    Article  PubMed  CAS  Google Scholar 

  25. Hilbe W, Dirnhofer S, Oberwasserlechner F et al (2003) Immunohistochemical typing of non-small cell lung cancer on cryostat sections: correlation with clinical parameters and prognosis. J Clin Pathol 56:736–741

    Article  PubMed  CAS  Google Scholar 

  26. Koutsopoulos AV, Mavroudis D, Dambaki KI et al (2007) Simultaneous expression of c-erbB-1, c-erbB-2, c-erbB-3 and c-erbB-4 receptors in non-small-cell lung carcinomas: correlation with clinical outcome. Lung Cancer 57:193–200

    Article  PubMed  Google Scholar 

  27. Lai WW, Chen FF, Wu MH et al (2001) Immunohistochemical analysis of epidermal growth factor receptor family members in stage I non-small cell lung cancer. Ann Thorac Surg 72:1868–1876

    Article  PubMed  CAS  Google Scholar 

  28. Travis WD, Brambilla E, Müller-Hermelink KH, Curtis CH (2004) WHO classification of tumours. Pathology and genetics of tumours of the lung, pleura, thymus and heart. IARC, Lyon

    Google Scholar 

  29. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A (2010) AJCC cancer staging manual. Springer, New York

    Google Scholar 

  30. Onn A, Correa AM, Gilcrease M et al (2004) Synchronous overexpression of epidermal growth factor receptor and HER2-neu protein is a predictor of poor outcome in patients with stage I non-small cell lung cancer. Clin Cancer Res 10:136–143

    Article  PubMed  CAS  Google Scholar 

  31. Reinmuth N, Brandt B, Kunze WP et al (2000) Ploidy, expression of erbB1, erbB2 and erbB3 in non-small cell lung cancer. Eur Respir J 16:991–996

    Article  PubMed  CAS  Google Scholar 

  32. Hirsch FR, Varella-Garcia M, Bunn PA Jr et al (2003) Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 21:3798–3807

    Article  PubMed  CAS  Google Scholar 

  33. Meert AP, Martin B, Verdebout JM et al (2005) Is there a relationship between c-erbB-1 and c-erbB-2 amplification and protein overexpression in NSCLC? Lung Cancer 47:325–336

    Article  PubMed  Google Scholar 

  34. Xu S, Kitayama J, Yamashita H, Souma D, Nagawa H (2008) Nuclear translocation of HER-4/c-erbB-4 is significantly correlated with prognosis of esophageal squamous cell carcinoma. J Surg Oncol 97:44–50

    Article  PubMed  CAS  Google Scholar 

  35. Elenius K, Paul S, Allison G, Sun J, Klagsbrun M (1997) Activation of HER4 by heparin-binding EGF-like growth factor stimulates chemotaxis but not proliferation. EMBO J 16:1268–1278

    Article  PubMed  CAS  Google Scholar 

  36. Tzahar E, Waterman H, Chen X et al (1996) A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 16:5276–5287

    PubMed  CAS  Google Scholar 

  37. Ono M, Hirata A, Kometani T et al (2004) Sensitivity to gefitinib (Iressa, ZD1839) in non-small cell lung cancer cell lines correlates with dependence on the epidermal growth factor (EGF) receptor/extracellular signal-regulated kinase 1/2 and EGF receptor/Akt pathway for proliferation. Mol Cancer Ther 3:465–472

    PubMed  CAS  Google Scholar 

  38. Amann J, Kalyankrishna S, Massion PP et al (2005) Aberrant epidermal growth factor receptor signaling and enhanced sensitivity to EGFR inhibitors in lung cancer. Cancer Res 65:226–235

    PubMed  CAS  Google Scholar 

  39. Gilmore AP, Valentijn AJ, Wang P et al (2002) Activation of BAD by therapeutic inhibition of epidermal growth factor receptor and transactivation by insulin-like growth factor receptor. J Biol Chem 277:27643–27650

    Article  PubMed  CAS  Google Scholar 

  40. Morgillo F, Cantile F, Fasano M, Troiani T, Martinelli E, Ciardiello F (2009) Resistance mechanisms of tumour cells to EGFR inhibitors. Clin Transl Oncol 11:270–275

    Article  PubMed  CAS  Google Scholar 

  41. Doebele RC, Oton AB, Peled N, Camidge DR, Bunn PA Jr (2010) New strategies to overcome limitations of reversible EGFR tyrosine kinase inhibitor therapy in non-small cell lung cancer. Lung Cancer 69:1–12

    Article  PubMed  Google Scholar 

  42. Gong HC, Wang S, Mayer G et al (2011) Signatures of drug sensitivity in non small cell lung cancer. Int J Proteomics. doi:10.1155/2011/215496

    PubMed  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Bellezza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellezza, G., Del Sordo, R., Colella, R. et al. Co-expression of receptors of the HER family correlates with clinical outcome in non-small cell lung cancer (NSCLC). Virchows Arch 463, 663–671 (2013). https://doi.org/10.1007/s00428-013-1445-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-013-1445-x

Keywords

Navigation