Skip to main content
Log in

Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans

  • Original Article
  • Neurophysiology, muscle and sensory organs
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The contractile characteristics of three human muscle groups (triceps surae, quadriceps femoris and triceps brachii) of seven young male subjects were examined. The contractile properties were determined from electrically evoked isometric responses and compared with fibre type composition determined from needle biopsy samples. Fibre types were identified using myosin heavy chain (MHC) isoforms as molecular markers with gel electrophoresis (SDS-PAGE) and histochemical ATPase staining. Four contractile parameters (twitch time to peak torque, the maximal rate of torque development, frequency response and fatiguability) were found to be related to fibre type composition. From the biopsy samples, single muscle fibres were isolated and chemically skinned. Isometric tension (P o) unloaded shortening velocity (V o) and rate of tension rise (dP/dt) were determined. Each fibre was classified on the basis of its MHC isoform composition determined by SDS-PAGE. Fibres belonging to the same type showed identical contractile parameters regardless of the muscle of origin, except minor differences in P o of the fast fibres and dP/dt of slow fibres. The results are in favour of the conclusion that fibre type composition, determined using MHC isoforms as markers, is the major determinant of the diversity of contractile properties among human muscle groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen DG, Lannergren J, Westerblad H (1995) Muscle cell function during prolonged activity: cellular mechanisms of fatigue. Exp Physiol 80:497–527

    PubMed  CAS  Google Scholar 

  2. Andersen JL, Klitgaard H, Bangsbo J, Saltin B (1993) Myosin heavy chain isoforms in single fibres from m. vastus lateralis of soccer players: effects of strength training. Acta Physiol Scand 151:135–142

    Article  Google Scholar 

  3. Bélanger AY, McComas AJ (1985) A comparison of contractile properties in human arm and leg muscles. Eur J Appl Physiol 54:326–330

    Article  Google Scholar 

  4. Bergström J (1962) Muscle electrolytes in man. Scan J Clin Lab Invest Suppl 68:1–110

    Google Scholar 

  5. Billeter R, Heizmann CW, Howald H, Jenny E (1981) Analysis of myosin light and heavy chain types in single human skeletal musle fibers. Eur J Biochem 116:389–395

    Article  PubMed  CAS  Google Scholar 

  6. Biral D, Betto R, Danieli-Betto D, Salviati G (1988) Myosin heavy chain composition of single fibres from normal human muscle. Biochem J 250:307–308

    PubMed  CAS  Google Scholar 

  7. Blomstrand E, Ekblom B (1982) The needle biopsy technique for fibre determination in human skeletal muscle — a methodological study. Acta Physiol Scand 116:437–442

    Article  PubMed  CAS  Google Scholar 

  8. Bottinelli R, Schiaffino S, Reggiani C (1991) Force-velocity relations and myosin heavy chain isoform compositions of skinned fibres from rat skeletal muscle. J Physiol (Lond) 437:655–672

    CAS  Google Scholar 

  9. Bottinelli R, Betto R, Schiaffino S, Reggiani C (1994) Unloaded shortening velocity and myosin heavy and alkali light chain isoform composition in rat skeletal muscle fibres. J Physiol (Lond) 478:341–349

    CAS  Google Scholar 

  10. Brooke MH, Kaiser KK (1970) Muscle fiber types. How many and what kind? Arch Neurol 23:369–379

    PubMed  CAS  Google Scholar 

  11. Buchthal F, Schmalbruch H (1970) Contraction times and fibre types in intact human muscle. Acta Physiol Scand 79:435–452

    Article  PubMed  CAS  Google Scholar 

  12. Close RI (1972) Dynamic properties of mammalian skeletal muscles. Physiol Rev 52:129–197

    PubMed  CAS  Google Scholar 

  13. Danieli-Betto D, Zerbato E, Betto R (1986) Type 1, 2a and 2b myosin heavy chain electrophoretic analysis of rat muscle fibers. Biochem Biophys Res Commun 130:981–987

    Article  Google Scholar 

  14. Danieli-Betto D, Betto R, Midrio M (1990) Calcium sensitivity and myofibrillar protein isoforms of rat skinned skeletal muscle fibres. Pflügers Arch 417:303–308

    Article  PubMed  CAS  Google Scholar 

  15. Davies CTM, Merow IK, White MJ (1982) Contractile properties of the human triceps surae with some observations on the effects of temperature and exercise. Eur J Appl Physiol 49: 255–269

    Article  CAS  Google Scholar 

  16. Duvaisin MR, Reed HE, Doerr DF, Dudley GA, Buchanan P (1988) A newly developed EMS unit. IEEE Trans Biomed Eng 10:677–678

    Google Scholar 

  17. Eberstein A, Goodgold J (1968) Slow and fast twitch fibres in human skeletal muscle. Am J Physiol 215:535–541

    PubMed  CAS  Google Scholar 

  18. Edman KAP (1979) The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. J Physiol (Lond) 291:143–159

    CAS  Google Scholar 

  19. Edwards RHT, Young A, Hosking GP, Jones DA (1977) Human skeletal muscle function: description of tests and normal values. Clin Sci 52:283–290

    CAS  Google Scholar 

  20. Ennion S, Sant’ana Pereira JAA, Sargeant AJ, Young A, Goldspink G (1995) Characterization of human skeletal muscle fibres according to the myosin heavy chains they express. J Mus Res Cell Motil 16:35–43

    Article  CAS  Google Scholar 

  21. Fitts RH, Costill DA, Gardetto PR (1989) Effect of swim training on human muscle fibre function. J Appl Physiol 242:65–73

    Google Scholar 

  22. Froese EA, Houston ME (1985) Torque-velocity characteristics and muscle fibre type in human vastus lateralis. J Appl Physiol 59:309–314

    PubMed  CAS  Google Scholar 

  23. Fry AC, Allemeier CA, Staron RS (1994) Correlation between percentage fibre type area and myosin heavy chain content in human skeletal muscle. Eur J Appl Physiol 68:246–251

    Article  CAS  Google Scholar 

  24. Harridge SDR, Bottinelli R, Reggiani C, Pettegrino MA, Canepari M, Saltin B (1995) Similar maximum velocity of shortening in single fibres expressing the same myosin heavy chain, but from different human skeletal muscles (Abstract). J Physiol (Lond) 487P. 152P

  25. Harridge SDR, White MJ, Carrington CA, Goodman M, Cummins P (1995) Electrically evoked torque-velocity characteristics and isomyosin composition of the triceps surae in young and elderly men. Acta Physiol Scand 15:469–477

    Article  Google Scholar 

  26. Klitgaard H, Zhou M, Schiaffino S, Betto R, Salviati G, Saltin B (1990) Ageing alters the myosin heavy chain composition of single fibres from human skeletal muscle. Acta Physiol Scand 140:55–62

    Article  PubMed  CAS  Google Scholar 

  27. Klitgaard H, Mantoni M, Schiaffino S, Ausoni S, Gorza L, Laurent-Winter C, Schnohr P, Saltin B (1990) Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta Physiol Scand 140:41–54

    Article  PubMed  CAS  Google Scholar 

  28. Kugelberg E, Thorneil L-E (1983) Contraction time, histochemical type and terminal cisternae volume of rat motor units. Muscle Nerve 6:149–153

    Article  PubMed  CAS  Google Scholar 

  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:660–681

    Article  Google Scholar 

  30. Larsson L, Moss R (1993) Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscle. J Physiol (Lond) 472:595–614

    CAS  Google Scholar 

  31. McDonagh MJN, White MJ, Davies CTM (1984) Different effects of ageing on the mechanical properties of human arm and leg muscles. Gerentology 30:49–54

    Article  CAS  Google Scholar 

  32. Moss RL (1979) Sarcomere length-tension relations in frog skinned muscle fibres during calcium activation at short lengths. J Physiol (Lond) 292:177–192

    CAS  Google Scholar 

  33. Novikoff AB, Woo-Yng Shun, Drucker J (1961) Mitochondrial localization of oxidative enzymes staining results with two tetrazolium salts. J Biophys Cytol 9:47–61

    Article  PubMed  CAS  Google Scholar 

  34. Padykula HA, Herman E (1955) The specificity of the histochemical method for adenosine triphosphate. J Histochem Cytochem 3:170–183

    PubMed  CAS  Google Scholar 

  35. Saltin B, Gollnick PD (1983) Skeletal muscle adaptability, significance for metabolism and performance. In: Peachey LD, Ardian RH, Geiger SR (eds) Handbook of physiology, section 10, skeletal muscle. Williams and Wilkins, Baltimore, Md, pp 555–663

    Google Scholar 

  36. Sant’ana Pereira JAA, Wessels A, Nijtmans L, Moorman AFM, Sargeant AJ (1994) New method for the accurate characterization of single human skeletal muscle fibres demonstrates a relation between mATPase and MyHC expression in pure and hybrid fibre types. J Mus Res Cell Motil 16:21–34

    Google Scholar 

  37. Smerdu V, Karsch-Mizrachi I, Campione M, Leinwand L, Schiaffino S (1994) Type IIx myosin heavy transcripts are expressed in type IIb fibres of human skeletal muscle. Am J Physiol 267:C1723-C1728

    PubMed  CAS  Google Scholar 

  38. Staron RS, Pette D (1986) Correlation between myofibrillar ATPase activity and myosin heavy chain composition in rabbit muscle fibres. Histochemistry 86:19–23

    Article  PubMed  CAS  Google Scholar 

  39. White MJ, Harridge SDR, Carrington CA, Goodman M, Cummins P (1994) The relationship between isometric contractile characteristics and isomyosin composition of the young and elderly human triceps surae (abstract). J Physiol (Lond) 475: 27P

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harridge, S.D.R., Bottinelli, R., Canepari, M. et al. Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans. Pflügers Arch. 432, 913–920 (1996). https://doi.org/10.1007/s004240050215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004240050215

Key words

Navigation