Skip to main content
Log in

Mitochondria play a central role in nonischemic cardiomyocyte necrosis: common to acute and chronic stressor states

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The survival of cardiomyocytes must be ensured as the myocardium adjusts to a myriad of competing physiological and pathophysiological demands. A significant loss of these contractile cells, together with their replacement by stiff fibrillar collagen in the form of fibrous tissue accounts for a transition from a usually efficient muscular pump into one that is failing. Cellular and subcellular mechanisms involved in the pathogenic origins of cardiomyocyte cell death have long been of interest. This includes programmed molecular pathways to either necrosis or apoptosis, which are initiated from ischemic or nonischemic origins. Herein, we focus on the central role played by a mitochondriocentric signal-transducer-effector pathway to nonischemic cardiomyocyte necrosis, which is common to acute and chronic stressor states. We begin by building upon the hypothesis advanced by Albrecht Fleckenstein and coworkers some 40 years ago based on the importance of calcitropic hormone-mediated intracellular Ca2+ overloading, which predominantly involves subsarcolemmal mitochondria and is the signal to pathway activation. Other pathway components, which came to be recognized in subsequent years, include the induction of oxidative stress and opening of the mitochondrial inner membrane permeability transition pore. The ensuing loss of cardiomyocytes and consequent replacement fibrosis, or scarring, represents a disease of adaptation and a classic example of when homeostasis begets dyshomeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahokas RA, Sun Y, Bhattacharya SK, Gerling IC, Weber KT (2005) Aldosteronism and a proinflammatory vascular phenotype. Role of Mg2+, Ca2+ and H2O2 in peripheral blood mononuclear cells. Circulation 111:51–57

    Article  PubMed  CAS  Google Scholar 

  2. Ammann P, Maggiorini M, Bertel O, Haenseler E, Joller-Jemelka HI, Oechslin E, Minder EI, Rickli H, Fehr T (2003) Troponin as a risk factor for mortality in critically ill patients without acute coronary syndromes. J Am Coll Cardiol 41:2004–2009

    Article  PubMed  CAS  Google Scholar 

  3. Angert D, Berretta RM, Kubo H, Zhang H, Chen X, Wang W, Ogorek B, Barbe M, Houser SR (2011) Repair of the injured adult heart involves new myocytes potentially derived from resident cardiac stem cells. Circ Res 108:1226–1237

    Article  PubMed  CAS  Google Scholar 

  4. Arbustini E, Brega A, Narula J (2008) Ultrastructural definition of apoptosis in heart failure. Heart Fail Rev 13:121–135

    Article  PubMed  Google Scholar 

  5. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662

    Article  PubMed  CAS  Google Scholar 

  6. Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Quaini F, Sonnenblick EH, Olivetti G, Anversa P (1994) Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 89:151–163

    Article  PubMed  CAS  Google Scholar 

  7. Benjamin IJ, Jalil JE, Tan LB, Cho K, Weber KT, Clark WA (1989) Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis. Circ Res 65:657–670

    Article  PubMed  CAS  Google Scholar 

  8. Bhattacharya SK, Palmieri GM, Bertorini TE, Nutting DF (1982) The effects of diltiazem in dystrophic hamsters. Muscle Nerve 5:73–78

    Article  PubMed  CAS  Google Scholar 

  9. Boluyt MO, Bing OH, Lakatta EG (1995) The ageing spontaneously hypertensive rat as a model of the transition from stable compensated hypertrophy to heart failure. Eur Heart J 16(Suppl N):19–30

    PubMed  CAS  Google Scholar 

  10. Buchalter MB, Rademakers FE, Weiss JL, Rogers WJ, Weisfeldt ML, Shapiro EP (1994) Rotational deformation of the canine left ventricle measured by magnetic resonance tagging: effects of catecholamines, ischaemia, and pacing. Cardiovasc Res 28:629–635

    Article  PubMed  CAS  Google Scholar 

  11. Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ (2006) Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol Cell Physiol 291:C1082–C1088

    Article  PubMed  CAS  Google Scholar 

  12. Cao DJ, Gillette TG, Hill JA (2009) Cardiomyocyte autophagy: remodeling, repairing, and reconstructing the heart. Curr Hypertens Rep 11:406–411

    Article  PubMed  Google Scholar 

  13. Cheema Y, Sherrod JN, Shahbaz AU, Zhao W, Zhao T, Ahokas RA, Sun Y, Bhattacharya SK, Gerling IC, Weber KT (2011) Mitochondriocentric pathway to cardiomyocyte necrosis in aldosteronism: cardioprotective responses to carvedilol and nebivolol. J Cardiovasc Pharmacol 58:80–86

    Article  PubMed  CAS  Google Scholar 

  14. Chhokar VS, Sun Y, Bhattacharya SK, Ahokas RA, Myers LK, Xing Z, Smith RA, Gerling IC, Weber KT (2004) Loss of bone minerals and strength in rats with aldosteronism. Am J Physiol Heart Circ Physiol 287:H2023–H2026

    Article  PubMed  CAS  Google Scholar 

  15. Chhokar VS, Sun Y, Bhattacharya SK, Ahokas RA, Myers LK, Xing Z, Smith RA, Gerling IC, Weber KT (2005) Hyperparathyroidism and the calcium paradox of aldosteronism. Circulation 111:871–878

    Article  PubMed  CAS  Google Scholar 

  16. Chvapil M, Owen JA (1977) Effect of zinc on acute and chronic isoproterenol induced heart injury. J Mol Cell Cardiol 9:151–159

    Article  PubMed  CAS  Google Scholar 

  17. Coatesworth W, Bolsover S (2006) Spatially organised mitochondrial calcium uptake through a novel pathway in chick neurones. Cell Calcium 39:217–225

    Article  PubMed  CAS  Google Scholar 

  18. Conrad CH, Brooks WW, Hayes JA, Sen S, Robinson KG, Bing OHL (1995) Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation 91:161–170

    Article  PubMed  CAS  Google Scholar 

  19. Crawford AJ, Bhattacharya SK (1987) Excessive intracellular zinc accumulation in cardiac and skeletal muscles of dystrophic hamsters. Exp Neurol 95:265–276

    Article  PubMed  CAS  Google Scholar 

  20. Doring HJ, Leder O, Jaedicke W, Reindell A, Fleckenstein A (1969) Limitation of the disappearance of energy-rich phosphate compounds in the hyperactive atrial and ventricular myocardium by divalent Ca-antagonistic inhibitors of electromechanical coupling (iprovdratril, D 600, prenylamine). Pflügers Arch 312:R7–R8

    PubMed  CAS  Google Scholar 

  21. Fleckenstein A, Janke J, Döring HJ, Leder O (1974) Myocardial fiber necrosis due to intracellular Ca overload—a new principle in cardiac pathophysiology. Recent Adv Stud Cardiac Struct Metab 4:563–580

    PubMed  CAS  Google Scholar 

  22. Fleckenstein A, Kanke J, Döring HJ, Leder O (1975) Key role of Ca in the production of noncoronarogenic myocardial necroses. Recent Adv Stud Cardiac Struct Metab 6:21–32

    PubMed  CAS  Google Scholar 

  23. Gallitelli MF, Schultz M, Isenberg G, Rudolf F (1999) Twitch-potentiation increases calcium in peripheral more than in central mitochondria of guinea-pig ventricular myocytes. J Physiol 518(Pt 2):433–447

    Article  PubMed  CAS  Google Scholar 

  24. Gandhi MS, Deshmukh PA, Kamalov G, Zhao T, Zhao W, Whaley JT, Tichy JR, Bhattacharya SK, Ahokas RA, Sun Y, Gerling IC, Weber KT (2008) Causes and consequences of zinc dyshomeostasis in rats with chronic aldosteronism. J Cardiovasc Pharmacol 52:245–252

    Article  PubMed  CAS  Google Scholar 

  25. Goodwin KD, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2006) Preventing oxidative stress in rats with aldosteronism by calcitriol and dietary calcium and magnesium supplements. Am J Med Sci 332:73–78

    Article  PubMed  Google Scholar 

  26. Gordon JW, Shaw JA, Kirshenbaum LA (2011) Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res 108:1122–1132

    Article  PubMed  CAS  Google Scholar 

  27. Gunnewiek JM, Van Der Hoeven JG (2004) Cardiac troponin elevations among critically ill patients. Curr Opin Crit Care 10:342–346

    Article  PubMed  Google Scholar 

  28. Gustafsson AB, Gottlieb RA (2003) Mechanisms of apoptosis in the heart. J Clin Immunol 23:447–459

    Article  PubMed  CAS  Google Scholar 

  29. Horwich TB, Patel J, MacLellan WR, Fonarow GC (2003) Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation 108:833–838

    Article  PubMed  CAS  Google Scholar 

  30. Hosoda T, Rota M, Kajstura J, Leri A, Anversa P (2011) Role of stem cells in cardiovascular biology. J Thromb Haemost 9(Suppl 1):151–161

    Article  PubMed  Google Scholar 

  31. Hughes SE (2003) Detection of apoptosis using in situ markers for DNA strand breaks in the failing human heart. Fact or epiphenomenon? J Pathol 201:181–186

    Article  PubMed  Google Scholar 

  32. Ilva T, Lassus J, Siirilä-Waris K, Melin J, Peuhkurinen K, Pulkki K, Nieminen MS, Mustonen H, Porela P, Harjola VP (2008) Clinical significance of cardiac troponins I and T in acute heart failure. Eur J Heart Fail 10:772–779

    Article  PubMed  CAS  Google Scholar 

  33. Ishii J, Nomura M, Nakamura Y, Naruse H, Mori Y, Ishikawa T, Ando T, Kurokawa H, Kondo T, Nagamura Y, Ezaki K, Hishida H (2002) Risk stratification using a combination of cardiac troponin T and brain natriuretic peptide in patients hospitalized for worsening chronic heart failure. Am J Cardiol 89:691–695

    Article  PubMed  CAS  Google Scholar 

  34. Javadov S, Karmazyn M (2007) Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol Biochem 20:1–22

    Article  PubMed  CAS  Google Scholar 

  35. Jeremias A, Gibson CM (2005) Narrative review: alternative causes for elevated cardiac troponin levels when acute coronary syndromes are excluded. Ann Intern Med 142:786–791

    PubMed  Google Scholar 

  36. Jin YT, Hasebe N, Matsusaka T, Natori S, Ohta T, Tsuji S, Kikuchi K (2007) Magnesium attenuates isoproterenol-induced acute cardiac dysfunction and beta-adrenergic desensitization. Am J Physiol Heart Circ Physiol 292:H1593–H1599

    Article  PubMed  CAS  Google Scholar 

  37. Jones WK, Brown M, Ren X, He S, McGuinness M (2003) NF-κB as an integrator of diverse signaling pathways: the heart of myocardial signaling? Cardiovasc Toxicol 3:229–254

    Article  PubMed  CAS  Google Scholar 

  38. Kamalov G, Deshmukh PA, Baburyan NY, Gandhi MS, Johnson PL, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2009) Coupled calcium and zinc dyshomeostasis and oxidative stress in cardiac myocytes and mitochondria of rats with chronic aldosteronism. J Cardiovasc Pharmacol 53:414–423

    Article  PubMed  CAS  Google Scholar 

  39. Kamalov G, Ahokas RA, Zhao W, Johnson PL, Shahbaz AU, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2010) Temporal responses to intrinsically coupled calcium and zinc dyshomeostasis in cardiac myocytes and mitochondria during aldosteronism. Am J Physiol Heart Circ Physiol 298:H385–H394

    Article  PubMed  CAS  Google Scholar 

  40. Kamalov G, Ahokas RA, Zhao W, Zhao T, Shahbaz AU, Johnson PL, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2010) Uncoupling the coupled calcium and zinc dyshomeostasis in cardiac myocytes and mitochondria seen in aldosteronism. J Cardiovasc Pharmacol 55:248–254

    Article  PubMed  CAS  Google Scholar 

  41. Kamalov G, Bhattacharya SK, Weber KT (2010) Congestive heart failure: where homeostasis begets dyshomeostasis. J Cardiovasc Pharmacol 56:320–328

    Article  PubMed  CAS  Google Scholar 

  42. Kametani R, Miura T, Harada N, Shibuya M, Wang R, Tan H, Fukagawa Y, Kawamura S, Matsuzaki M (2006) Carvedilol inhibits mitochondrial oxygen consumption and superoxide production during calcium overload in isolated heart mitochondria. Circ J 70:321–326

    Article  PubMed  CAS  Google Scholar 

  43. Kociol RD, Pang PS, Gheorghiade M, Fonarow GC, O'Connor CM, Felker GM (2010) Troponin elevation in heart failure prevalence, mechanisms, and clinical implications. J Am Coll Cardiol 56:1071–1078

    Article  PubMed  CAS  Google Scholar 

  44. Kohlhardt M, Bauer B, Krause H, Fleckenstein A (1972) Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibres by the use of specific inhibitors. Pflügers Arch 335:309–322

    Article  PubMed  CAS  Google Scholar 

  45. Kohlhardt M, Bauer B, Krause H, Fleckenstein A (1973) Selective inhibition of the transmembrane Ca conductivity of mammalian myocardial fibres by Ni, Co and Mn ions. Pflügers Arch 338:115–123

    Article  PubMed  CAS  Google Scholar 

  46. Kostin S, Pool L, Elsässer A, Hein S, Drexler HC, Arnon E, Hayakawa Y, Zimmermann R, Bauer E, Klövekorn WP, Schaper J (2003) Myocytes die by multiple mechanisms in failing human hearts. Circ Res 92:715–724

    Article  PubMed  CAS  Google Scholar 

  47. Kumar D, Lou H, Singal PK (2002) Oxidative stress and apoptosis in heart dysfunction. Herz 27:662–668

    Article  PubMed  Google Scholar 

  48. Kung G, Konstantinidis K, Kitsis RN (2011) Programmed necrosis, not apoptosis, in the heart. Circ Res 108:1017–1036

    Article  PubMed  CAS  Google Scholar 

  49. Kuroda J, Sadoshima J (2010) NADPH oxidase and cardiac failure. J Cardiovasc Transl Res 3:314–320

    Article  PubMed  Google Scholar 

  50. Kuwabara Y, Sato Y, Miyamoto T, Taniguchi R, Matsuoka T, Isoda K, Yamane K, Nishi K, Fujiwara H, Takatsu Y (2007) Persistently increased serum concentrations of cardiac troponin in patients with acutely decompensated heart failure are predictive of adverse outcomes. Circ J 71:1047–1051

    Article  PubMed  CAS  Google Scholar 

  51. Lossnitzer K, Janke J, Hein B, Stauch M, Fleckenstein A (1975) Disturbed myocardial calcium metabolism: a possible pathogenetic factor in the hereditary cardiomyopathy of the Syrian hamster. Recent Adv Stud Cardiac Struct Metab 6:207–217

    PubMed  CAS  Google Scholar 

  52. Löwbeer C, Gustafsson SA, Seeberger A, Bouvier F, Hulting J (2004) Serum cardiac troponin T in patients hospitalized with heart failure is associated with left ventricular hypertrophy and systolic dysfunction. Scand J Clin Lab Invest 64:667–676

    Article  PubMed  Google Scholar 

  53. Maeder M, Fehr T, Rickli H, Ammann P (2006) Sepsis-associated myocardial dysfunction: diagnostic and prognostic impact of cardiac troponins and natriuretic peptides. Chest 129:1349–1366

    Article  PubMed  CAS  Google Scholar 

  54. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    Article  PubMed  CAS  Google Scholar 

  55. Miller WL, Hartman KA, Burritt MF, Grill DE, Jaffe AS (2009) Profiles of serial changes in cardiac troponin T concentrations and outcome in ambulatory patients with chronic heart failure. J Am Coll Cardiol 54:1715–1721

    Article  PubMed  CAS  Google Scholar 

  56. Mughal W, Kirshenbaum LA (2011) Cell death signalling mechanisms in heart failure. Exp Clin Cardiol 16:102–108

    PubMed  CAS  Google Scholar 

  57. Nakayama H, Chen X, Baines CP, Klevitsky R, Zhang X, Zhang H, Jaleel N, Chua BH, Hewett TE, Robbins J, Houser SR, Molkentin JD (2007) Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 117:2431–2444

    Article  PubMed  CAS  Google Scholar 

  58. Nishida K, Yamaguchi O, Otsu K (2008) Crosstalk between autophagy and apoptosis in heart disease. Circ Res 103:343–351

    Article  PubMed  CAS  Google Scholar 

  59. Nykamp D, Titak JA (2010) Takotsubo cardiomyopathy, or broken-heart syndrome. Ann Pharmacother 44:590–593

    Article  PubMed  Google Scholar 

  60. Ong SB, Gustafsson AB (2012) New roles for mitochondria in cell death in the reperfused myocardium. Cardiovasc Res (in press)

  61. Paravicini TM, Touyz RM (2008) NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 31(Suppl 2):S170–S180

    Article  PubMed  CAS  Google Scholar 

  62. Peacock WF 4th, De Marco T, Fonarow GC, Diercks D, Wynne J, Apple FS, Wu AH (2008) Cardiac troponin and outcome in acute heart failure. N Engl J Med 358:2117–2126

    Article  PubMed  CAS  Google Scholar 

  63. Rizzuto R, Pinton P, Brini M, Chiesa A, Filippin L, Pozzan T (1999) Mitochondria as biosensors of calcium microdomains. Cell Calcium 26:193–199

    Article  PubMed  CAS  Google Scholar 

  64. Rona G (1985) Catecholamine cardiotoxicity. J Mol Cell Cardiol 17:291–306

    Article  PubMed  CAS  Google Scholar 

  65. Rushmer RF, Thal N (1951) The mechanics of ventricular contraction: a cinefluorographic study. Circulation 4:219–228

    Article  PubMed  CAS  Google Scholar 

  66. Sanganalmath SK, Abdel-Latif A, Bolli R, Xuan YT, Dawn B (2011) Hematopoietic cytokines for cardiac repair: mobilization of bone marrow cells and beyond. Basic Res Cardiol 106:709–733

    Article  PubMed  CAS  Google Scholar 

  67. Santos DL, Moreno AJ, Leino RL, Froberg MK, Wallace KB (2002) Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicol Appl Pharmacol 185:218–227

    Article  PubMed  CAS  Google Scholar 

  68. Sato Y, Nishi K, Taniguchi R, Miyamoto T, Fukuhara R, Yamane K, Saijyo S, Tanada Y, Yamamoto E, Goto T, Takahashi N, Fujiwara H, Takatsu Y (2009) In patients with heart failure and non-ischemic heart disease, cardiac troponin T is a reliable predictor of long-term echocardiographic changes and adverse cardiac events. J Cardiol 54:221–230

    Article  PubMed  Google Scholar 

  69. Schaper J, Lorenz-Meyer S, Suzuki K (1999) The role of apoptosis in dilated cardiomyopathy. Herz 24:219–224

    Article  PubMed  CAS  Google Scholar 

  70. Sedmera D, Reckova M, Bigelow MR, Dealmeida A, Stanley CP, Mikawa T, Gourdie RG, Thompson RP (2004) Developmental transitions in electrical activation patterns in chick embryonic heart. Anat Rec A Discov Mol Cell Evol Biol 280:1001–1009

    Article  PubMed  Google Scholar 

  71. Selektor Y, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2008) Cinacalcet and the prevention of secondary hyperparathyroidism in rats with aldosteronism. Am J Med Sci 335:105–110

    Article  PubMed  Google Scholar 

  72. Sgobbo P, Pacelli C, Grattagliano I, Villani G, Cocco T (2007) Carvedilol inhibits mitochondrial complex I and induces resistance to H2O2-mediated oxidative insult in H9C2 myocardial cells. Biochim Biophys Acta 1767:222–232

    Article  PubMed  CAS  Google Scholar 

  73. Shahbaz AU, Kamalov G, Zhao W, Zhao T, Johnson PL, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC, Weber KT (2011) Mitochondria-targeted cardioprotection in aldosteronism. J Cardiovasc Pharmacol 57:37–43

    Article  PubMed  CAS  Google Scholar 

  74. Shahbaz AU, Zhao T, Zhao W, Johnson PL, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2011) Calcium and zinc dyshomeostasis during isoproterenol-induced acute stressor state. Am J Physiol Heart Circ Physiol 300:H636–H644

    Article  PubMed  CAS  Google Scholar 

  75. Shechter M (2010) Magnesium and cardiovascular system. Magnes Res 23:60–72

    PubMed  Google Scholar 

  76. Singal PK, Dhillon KS, Beamish RE, Dhalla NS (1981) Protective effect of zinc against catecholamine-induced myocardial changes electrocardiographic and ultrastructural studies. Lab Invest 44:426–433

    PubMed  CAS  Google Scholar 

  77. Singh SS, Kang PM (2011) Mechanisms and inhibitors of apoptosis in cardiovascular diseases. Curr Pharm Des 17:1783–1793

    Google Scholar 

  78. Sukova J, Ostadal P, Widimsky P (2007) Profile of patients with acute heart failure and elevated troponin I levels. Exp Clin Cardiol 12:153–156

    PubMed  Google Scholar 

  79. Sun Y, Zhang J, Lu L, Chen SS, Quinn MT, Weber KT (2002) Aldosterone-induced inflammation in the rat heart. Role of oxidative stress. Am J Pathol 161:1773–1781

    Article  PubMed  CAS  Google Scholar 

  80. Takemura G, Fujiwara H (2006) Morphological aspects of apoptosis in heart diseases. J Cell Mol Med 10:56–75

    Article  PubMed  CAS  Google Scholar 

  81. Tamura T, Said S, Lu W, Harris J, Neufeld D, Burbach JA, Gerdes AM (2000) Is apoptosis present in progression to chronic hypertensive heart failure? J Card Fail 6:37–42

    Article  PubMed  CAS  Google Scholar 

  82. Thomas M, Vidal A, Bhattacharya SK, Ahokas RA, Sun Y, Gerling IC, Weber KT (2007) Zinc dyshomeostasis in rats with aldosteronism. Response to spironolactone. Am J Physiol Heart Circ Physiol 293:H2361–H2366

    Article  PubMed  CAS  Google Scholar 

  83. Tritthart H, Fleckenstein A, Kaufmann R (1968) Specific increase in relaxation velocity of the isolated ventricular myocardium of rhesus monkeys, guinea pigs and frogs produced by sympathetic transmitters, and the neutralization of this effect by beta-receptor blockade. Pflügers Arch 303:350–365

    Article  PubMed  CAS  Google Scholar 

  84. Trumbeckaite S, Bernatoniene J, Majiene D, Jakstas V, Savickas A, Toleikis A (2006) The effect of flavonoids on rat heart mitochondrial function. Biomed Pharmacother 60:245–248

    Article  PubMed  CAS  Google Scholar 

  85. Tsutsui H, Kinugawa S, Matsushima S (2009) Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res 81:449–456

    Article  PubMed  CAS  Google Scholar 

  86. Vasile VC, Babuin L, Rio Perez JA, Alegria JR, Song LM, Chai HS, Afessa B, Jaffe AS (2009) Long-term prognostic significance of elevated cardiac troponin levels in critically ill patients with acute gastrointestinal bleeding. Crit Care Med 37:140–147

    Article  PubMed  CAS  Google Scholar 

  87. Vidal A, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC, Weber KT (2006) Calcium paradox of aldosteronism and the role of the parathyroid glands. Am J Physiol Heart Circ Physiol 290:H286–H294

    Article  PubMed  CAS  Google Scholar 

  88. Weber KT (1989) Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 13:1637–1652

    Article  PubMed  CAS  Google Scholar 

  89. Weber HW, Van Der Walt JJ (1975) Cardiomyopathy in crowded rabbits. Recent Adv Stud Cardiac Struct Metab 6:471–477

    PubMed  CAS  Google Scholar 

  90. Weber KT, Brilla CG, Janicki JS (1993) Myocardial fibrosis: functional significance and regulatory factors. Cardiovasc Res 27:341–348

    Article  PubMed  CAS  Google Scholar 

  91. Wu TT, Yuan A, Chen CY, Chen WJ, Luh KT, Kuo SH, Lin FY, Yang PC (2004) Cardiac troponin I levels are a risk factor for mortality and multiple organ failure in noncardiac critically ill patients and have an additive effect to the APACHE II score in outcome prediction. Shock 22:95–101

    Article  PubMed  CAS  Google Scholar 

  92. Zairis MN, Tsiaousis GZ, Georgilas AT, Makrygiannis SS, Adamopoulou EN, Handanis SM, Batika PC, Prekates AA, Velissaris D, Kouris NT, Mytas DZ, Babalis DK, Karidis KS, Foussas SG (2009) Multimarker strategy for the prediction of 31 days cardiac death in patients with acutely decompensated chronic heart failure. Int J Cardiol 141:284–290

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by NIH grants R01-HL73043 and R01-HL90867 (KTW). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. Authors have no conflicts of interest to disclose. We wish to express our deep gratitude to Richard A. Parkinson, MEd, for editorial assistance and illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl T. Weber.

Additional information

This article is published as part of the special issue on “Cell-specific roles of mitochondrial Ca2+ handling.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.U., Cheema, Y., Shahbaz, A.U. et al. Mitochondria play a central role in nonischemic cardiomyocyte necrosis: common to acute and chronic stressor states. Pflugers Arch - Eur J Physiol 464, 123–131 (2012). https://doi.org/10.1007/s00424-012-1079-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1079-x

Keywords

Navigation