Skip to main content

Advertisement

Log in

A new paradigm of neuromuscular electrical stimulation for the quadriceps femoris muscle

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Neuromuscular electrical stimulation (NMES) with large electrodes and multiple current pathways (m-NMES) has recently been proposed as a valid alternative to conventional NMES (c-NMES) for quadriceps muscle (re)training. The main aim of this study was to compare discomfort, evoked force and fatigue between m-NMES and c-NMES of the quadriceps femoris muscle in healthy subjects.

Methods

Ten healthy subjects completed two experimental sessions (c-NMES and m-NMES), that were randomly presented in a cross-over design. Maximal electrically evoked force at pain threshold, self-reported discomfort at different levels of evoked force, and fatigue-induced force declines during and following a series of 20 NMES contractions were compared between c-NMES and m-NMES.

Results

m-NMES resulted in greater evoked force (P < 0.05) and lower discomfort in comparison to c-NMES (P < 0.05–0.001), but fatigue time course and magnitude did not differ between the two conditions.

Conclusions

The use of quadriceps m-NMES appears legitimate for (re)training purposes because it generated stronger contractions and was less discomfortable than c-NMES (due to multiple current pathways and/or lower current density with larger electrodes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

c-NMES:

Conventional neuromuscular electrical stimulation

m-NMES:

Multipath neuromuscular electrical stimulation

MVC:

Maximal voluntary contraction

NMES:

Neuromuscular electrical stimulation

SD:

Standard deviation

VAS:

Visual analogue scale

References

  • Adams GR, Harris RT, Woodard D, Dudley GA (1993) Mapping of electrical muscle stimulation using MRI. J Appl Physiol 74:532–537

    CAS  PubMed  Google Scholar 

  • Alon G (1985) High voltage stimulation. Effects of electrode size on basic excitatory responses. Phys Ther 65:890–895

    CAS  PubMed  Google Scholar 

  • Bax L, Staes F, Verhagen A (2005) Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomised controlled trials. Sports Med 35:191–212

    Article  PubMed  Google Scholar 

  • Bennie SD, Petrofsky JS, Nisperos J, Tsurudome M, Laymon M (2002) Toward the optimal waveform for electrical stimulation of human muscle. Eur J Appl Physiol 88:13–19

    Article  PubMed  Google Scholar 

  • Bickel CS, Gregory CM, Dean JC (2011) Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol 111:2399–2407

    Article  PubMed  Google Scholar 

  • Botter A, Merletti R, Minetto MA (2009) Pulse charge and not waveform affects M-wave properties during progressive motor unit activation. J Electromyogr Kinesiol 19:564–573

    Article  CAS  PubMed  Google Scholar 

  • Bowman BR, Baker LL (1985) Effects of waveform parameters on comfort during transcutaneous neuromuscular electrical stimulation. Ann Biomed Eng 13:59–74

    Article  CAS  PubMed  Google Scholar 

  • Burke D, Mackenzie RA, Skuse NF, Lethlean AK (1975) Cutaneous afferent activity in median and radial nerve fascicles: a microelectrode study. J Neurol Neurosurg Psychiatry 38:855–864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delitto A, Strube MJ, Shulman AD, Minor SD (1992) A study of discomfort with electrical stimulation. Phys Ther 72:410–421

    CAS  PubMed  Google Scholar 

  • Doheny EP, Caulfield BM, Minogue CM, Lowery MM (2010) Effect of subcutaneous fat thickness and surface electrode configuration during neuromuscular electrical stimulation. Med Eng Phys 32:468–474

    Article  PubMed  Google Scholar 

  • Feil S, Newell J, Minogue C, Paessler HH (2011) The effectiveness of supplementing a standard rehabilitation program with superimposed neuromuscular electrical stimulation after anterior cruciate ligament reconstruction: a prospective, randomized, single-blind study. Am J Sports Med 39:1238–1247

    Article  PubMed  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    CAS  PubMed  Google Scholar 

  • Gobbo M, Gaffurini P, Bissolotti L, Esposito F, Orizio C (2011) Transcutaneous neuromuscular electrical stimulation: influence of electrode positioning and stimulus amplitude settings on muscle response. Eur J Appl Physiol 111:2451–2459

    Article  CAS  PubMed  Google Scholar 

  • Gondin J, Cozzone PJ, Bendahan D (2011) Is high-frequency neuromuscular electrical stimulation a suitable tool for muscle performance improvement in both healthy humans and athletes? Eur J Appl Physiol 111:2473–2487

    Article  PubMed  Google Scholar 

  • Gorgey AS, Dudley GA (2008) The role of pulse duration and stimulation duration in maximizing the normalized torque during neuromuscular electrical stimulation. J Orthop Sports Phys Ther 38:508–516

    Article  PubMed Central  PubMed  Google Scholar 

  • Gregory CM, Bickel CS (2005) Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 85:358–364

    PubMed  Google Scholar 

  • Gregory CM, Dixon W, Bickel CS (2007) Impact of varying pulse frequency and duration on muscle torque production and fatigue. Muscle Nerve 35:504–509

    Article  PubMed  Google Scholar 

  • Kebaetse MB, Lee SC, Binder-Macleod SA (2001) A novel stimulation pattern improves performance during repetitive dynamic contractions. Muscle Nerve 24:744–752

    Article  CAS  PubMed  Google Scholar 

  • Kesar T, Chou LW, Binder-Macleod SA (2008) Effects of stimulation frequency versus pulse duration modulation on muscle fatigue. J Electromyogr Kinesiol 18:662–671

    Article  PubMed Central  PubMed  Google Scholar 

  • Lai H, De Domenico G, Strauss G (1988) The effect of different electro-motor stimulation training intensities on strength improvement. Aust J Physiother 34:151–164

    Article  Google Scholar 

  • Laufer Y, Snyder-Mackler L (2010) Response of male and female subjects after total knee arthroplasty to repeated neuromuscular electrical stimulation of the quadriceps femoris muscle. Am J Phys Med Rehabil 89:464–472

    Article  PubMed  Google Scholar 

  • Laufer Y, Ries JD, Leininger PM, Alon G (2001) Quadriceps femoris muscle torques and fatigue generated by neuromuscular electrical stimulation with three different waveforms. Phys Ther 81:1307–1316

    CAS  PubMed  Google Scholar 

  • Lexell J, Henriksson-Larsen K, Sjostrom M (1983) Distribution of different fibre types in human skeletal muscles. 2. A study of cross-sections of whole m. vastus lateralis. Acta Physiol Scand 117:115–122

    Article  CAS  PubMed  Google Scholar 

  • Lieber RL, Kelly MJ (1991) Factors influencing quadriceps femoris muscle torque using transcutaneous neuromuscular electrical stimulation. Phys Ther 71:715–721

    CAS  PubMed  Google Scholar 

  • Lyons GM, Leane GE, Clarke-Moloney M, O’Brien JV, Grace PA (2004) An investigation of the effect of electrode size and electrode location on comfort during stimulation of the gastrocnemius muscle. Med Eng Phys 26:873–878

    Article  CAS  PubMed  Google Scholar 

  • Maffiuletti NA (2010) Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol 110:223–234

    Article  PubMed  Google Scholar 

  • Maffiuletti NA, Minetto MA, Farina D, Bottinelli R (2011) Electrical stimulation for neuromuscular testing and training: state-of-the art and unresolved issues. Eur J Appl Physiol 111:2391–2397

    Article  PubMed  Google Scholar 

  • Maffiuletti NA, Roig M, Karatzanos E, Nanas S (2013) Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: a systematic review. BMC Med 11:137

    Article  PubMed Central  PubMed  Google Scholar 

  • Malesevic NM, Popovic LZ, Schwirtlich L, Popovic DB (2010) Distributed low-frequency functional electrical stimulation delays muscle fatigue compared to conventional stimulation. Muscle Nerve 42:556–562

    Article  PubMed  Google Scholar 

  • Morch CD, Hennings K, Andersen OK (2011) Estimating nerve excitation thresholds to cutaneous electrical stimulation by finite element modeling combined with a stochastic branching nerve fiber model. Med Biol Eng Comput 49:385–395

    Article  PubMed  Google Scholar 

  • Naaman SC, Stein RB, Thomas C (2000) Minimizing discomfort with surface neuromuscular stimulation. Neurorehabil Neural Repair 14:223–228

    CAS  PubMed  Google Scholar 

  • Neyroud D, Maffiuletti NA, Kayser B, Place N (2012) Mechanisms of fatigue and task failure induced by sustained submaximal contractions. Med Sci Sports Exerc 44:1243–1251

    Article  PubMed  Google Scholar 

  • Paessler HH (2012) Emerging techniques in orthopedics: advances in neuromuscular electrical stimulation. Am J Orthop 41:1–8

    Google Scholar 

  • Parker MG, Berhold M, Brown R, Hunter S, Smith MR, Runhling RO (1986) Fatigue response in human quadriceps femoris muscle during high frequency electrical stimulation. J Orthop Sports Phys Ther 7:145–153

    Article  CAS  PubMed  Google Scholar 

  • Place N, Maffiuletti NA, Martin A, Lepers R (2007) Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle Nerve 35:486–495

    Article  PubMed  Google Scholar 

  • Snyder-Mackler L, Delitto A, Stralka SW, Bailey SL (1994) Use of electrical stimulation to enhance recovery of quadriceps femoris muscle force production in patients following anterior cruciate ligament reconstruction. Phys Ther 74:901–907

    CAS  PubMed  Google Scholar 

  • Stevens-Lapsley JE, Balter JE, Wolfe P, Eckhoff DG, Kohrt WM (2012) Early neuromuscular electrical stimulation to improve quadriceps muscle strength after total knee arthroplasty: a randomized controlled trial. Phys Ther 92:210–226

    Article  PubMed Central  PubMed  Google Scholar 

  • Theurel J, Lepers R, Pardon L, Maffiuletti NA (2007) Differences in cardiorespiratory and neuromuscular responses between voluntary and stimulated contractions of the quadriceps femoris muscle. Respir Physiol Neurobiol 157:341–347

    Google Scholar 

  • Vanderthommen M, Duchateau J (2007) Electrical stimulation as a modality to improve performance of the neuromuscular system. Exerc Sport Sci Rev 35:180–185

    Article  PubMed  Google Scholar 

  • Vanderthommen M, Duteil S, Wary C, Raynaud JS, Leroy-Willig A, Crielaard JM, Carlier PG (2003) A comparison of voluntary and electrically induced contractions by interleaved 1H- and 31P-NMRS in humans. J Appl Physiol 94:1012–1024

    CAS  PubMed  Google Scholar 

  • Vivodtzev I, Debigare R, Gagnon P, Mainguy V, Saey D, Dube A, Pare ME, Belanger M, Maltais F (2012) Functional and muscular effects of neuromuscular electrical stimulation in patients with severe COPD: a randomized clinical trial. Chest 141:716–725

    Article  PubMed  Google Scholar 

  • Walls RJ, McHugh G, O’Gorman DJ, Moyna NM, O’Byrne JM (2010) Effects of preoperative neuromuscular electrical stimulation on quadriceps strength and functional recovery in total knee arthroplasty. A pilot study. BMC Musculoskelet Disord 11:119

    Article  PubMed Central  PubMed  Google Scholar 

  • Zory R, Boerio D, Jubeau M, Maffiuletti NA (2005) Central and peripheral fatigue of the knee extensor muscles induced by electromyostimulation. Int J Sports Med 26:847–853

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Bio-Medical Research Ltd. (Galway, Ireland) for logistical support during the experimental phase of the study.

Conflict of interest

The authors declare no conflict of interest regarding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola A. Maffiuletti.

Additional information

Communicated by Toshio Moritani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maffiuletti, N.A., Vivodtzev, I., Minetto, M.A. et al. A new paradigm of neuromuscular electrical stimulation for the quadriceps femoris muscle. Eur J Appl Physiol 114, 1197–1205 (2014). https://doi.org/10.1007/s00421-014-2849-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2849-2

Keywords

Navigation