Skip to main content

Advertisement

Log in

Comparison in eccentric exercise-induced muscle damage among four limb muscles

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study tested the hypothesis that changes in indirect markers of muscle damage following maximal eccentric exercise would be smaller for the knee extensors (KE) and flexors (KF) compared with the elbow flexors (EF) and extensors (EE). A total of 17 sedentary men performed five sets of six maximal isokinetic (90° s−1) eccentric contractions of EF (range of motion, ROM: 90°–0°, 0 = full extension), EE (55°–145°), KF (90°–0°), and KE (30°–120°) using a different limb with a 4–5-week interval in a counterbalanced order. Changes in maximal isometric and concentric isokinetic strength, optimum angle, limb circumference, ROM, plasma creatine kinase activity and myoglobin concentration, muscle soreness, and echo-intensity of B-mode ultrasound images before and for 5 days following exercise were compared amongst the four exercises using two-way repeated-measures ANOVA. All variables changed significantly following EF, EE, and KF exercises, but KE exercise did not change the optimum angle, limb circumference, and echo-intensity. Compared with KF and KE, EF and EE showed significantly greater changes in all variables, without significant differences between EF and EE. Changes in all variables were significantly greater for KF than KE. For the same subjects, the magnitude of change in the dependent variables following exercise varied among the exercises. These results suggest that the two arm muscles are equally more susceptible to muscle damage than leg muscles, but KF is more susceptible to muscle damage than KE. The difference in the susceptibility to muscle damage seems to be associated with the use of muscles in daily activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Becker I, Woodley S, Baxter GD (2009) Gross morphology of the vastus lateralis muscle: an anatomical review. Clin Anat 22:436–450

    Article  PubMed  Google Scholar 

  • Black CD, McCully KK (2008) Muscle injury after repeated bouts of voluntary and electrically stimulated exercise. Med Sci Sports Exerc 40:1605–1615

    Article  PubMed  Google Scholar 

  • Bowers EJ, Morgan DL, Proske U (2004) Damage to the human quadriceps muscle from eccentric exercise and the training effect. J Sports Sci 22:1005–1014

    Article  CAS  PubMed  Google Scholar 

  • Brockett CL, Morgan DL, Proske U (2001) Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med Sci Sports Exerc 33:783–790

    CAS  PubMed  Google Scholar 

  • Byrne C, Twist C, Eston R (2004) Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports Med 34:49–69

    Article  PubMed  Google Scholar 

  • Chapman DW, Newton M, McGuigan M, Nosaka K (2008) Effect of lengthening contraction velocity on muscle damage of the elbow flexors. Med Sci Sports Exerc 40:926–933

    Article  PubMed  Google Scholar 

  • Chen TC, Nosaka K (2006) Responses of elbow flexors to two strenuous eccentric exercise bouts separated by three days. J Strength Cond Res 20:108–116

    PubMed  Google Scholar 

  • Chen TC, Nosaka K, Sacco P (2007) Intensity of eccentric exercise, shift of optimum angle and the magnitude of repeated bout effect. J Appl Physiol 102:992–999

    Article  PubMed  Google Scholar 

  • Chen TC, Chen HL, Lin MJ, Wu CJ, Nosaka K (2009) Muscle damage responses of the elbow flexors to four maximal eccentric exercise bouts performed every four weeks. Eur J Appl Physiol 106:267–275

    Article  PubMed  Google Scholar 

  • Chelboun GS, France AR, Crill MT, Braddock HK, Howell JN (2001) In vivo measurement of fascicle length and pennation angle of the human biceps femoris muscle. Cells Tissues Organs 169:401–409

    Article  Google Scholar 

  • Clarkson PM, Hubal MJ (2002) Exercise-induced muscle damage in humans. Am J Phys Med Rehabil 81:S52–S69

    Article  PubMed  Google Scholar 

  • Clarkson PM, Nosaka K, Braun B (1992) Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc 24:512–520

    CAS  PubMed  Google Scholar 

  • Clarkson PM, Hoffman EP, Zambraski E, Gordish-Dressman H, Kearns A, Hubal M, Harmon B, Devaney JM (2005) ACTN3 and MLCK genotype associations with exertional muscle damage. J Appl Physiol 99:564–569

    Article  CAS  PubMed  Google Scholar 

  • Cramer JT, Beck TW, Housh TJ, Massey LL, Marek SM, Danglemeier S, Purkayastha S, Culbertson JY, Fitz KA, Egan AD (2007) Acute effects of static stretching on characteristics of the isokinetic angle-torque relationship, surface electromyography, and mechanomyography. J Sports Sci 25:687–698

    Article  PubMed  Google Scholar 

  • Crameri RM, Aagaard P, Qvortrup K, Langberg H, Olesen J, Kjær M (2007) Myofibre damage in human skeletal muscle: effects of electrical stimulation versus voluntary contraction. J Physiol (Lond) 583:365–380

    Article  CAS  Google Scholar 

  • Dudley GA, Czerkawski J, Meinrod A, Gillis G, Baldwin A, Scarpone M (1997) Efficacy of naproxen sodium for exercise-induced dysfunction muscle injury and soreness. Clin J Sport Med 7:3–10

    Article  CAS  PubMed  Google Scholar 

  • Erskine RM, Jones DA, Maganaris CN, Degens H (2009) In vivo specific tension of the human quadriceps femoris muscle. Eur J Appl Physiol 106:827–838

    Article  PubMed  Google Scholar 

  • Franklin ME, Chamness MS, Chenier TC, Mosteller GC, Barrow LA (1993) A comparison of isokinetic eccentric exercise on delayed-onset muscle soreness and creatine kinase in the quadriceps versus the hamstrings. Isokinet Exerc Sci 3:68–73

    Google Scholar 

  • Fridén J, Sjøstrøm M, Ekblom B (1983) Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med 4(3):170–176

    Article  PubMed  Google Scholar 

  • Golden CL, Dudley GA (1992) Strength after bouts of eccentric or concentric actions. Med Sci Sports Exerc 24:926–933

    CAS  PubMed  Google Scholar 

  • Hawes MR, Martin AD (2001) Human body composition. In: Eston R, Reilly T (eds) Kinanthropometry and exercise physiology laboratory manual: tests, procedures and data. Routledge, London, pp 42–43

    Google Scholar 

  • Hirose L, Nosaka K, Newton M, Lavender A, Kano M, Peake J, Suzuki K (2004) Changes in inflammatory mediators following eccentric exercise of the elbow flexors. Exerc Immunol Rev 10:75–90

    PubMed  Google Scholar 

  • Hoeger WWK, Barette SL, Hale DP, Hopkins DR (1987) Relationship between repetitions and selected percentages of one repetition maximum. J Appl Sport Sci Res 1:11–13

    Google Scholar 

  • Hoeger WWK, Hopkins DR, Barette SL, Hale DP (1990) Relationship between repetitions and selected percentages of one repetition maximum: a comparison between untrained and trained males and females. J Appl Sport Sci Res 4:47–54

    Google Scholar 

  • Hubal MJ, Devaney JM, Hoffman EP, Zambraski EJ, Gordish-Dressman H, Kearns AK, Larkin JS, Adham K, Patel RR, Clarkson PM (2010) CCL2 and CCR2 polymorphisms are associated with markers of exercise-induced skeletal muscle damage. J Appl Physiol 108:1651–1658

    Article  CAS  PubMed  Google Scholar 

  • Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18:111–129

    Article  CAS  PubMed  Google Scholar 

  • Jamurtas AZ, Theocharis V, Tofas T, Tsiokanos A, Yfanti C, Paschalis V, Koutedakis Y, Nosaka K (2005) Comparison between leg and arm eccentric exercises of the same relative intensity on indices of muscle damage. Eur J Appl Physiol 95:179–185

    Article  PubMed  Google Scholar 

  • Lieber RL (2002) Skeletal muscle structure, function, and plasticity: the physiological basis of rehabilitation, 2nd edn. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  • Makihara Y, Nishino A, Fukubayashi T, Kanamori A (2006) Decrease of knee flexion torque in patients with ACL reconstruction: combined analysis of the architecture and function of the knee flexor muscles. Knee Surg Sports Traumatol Arthrosc 14:310–317

    Article  PubMed  Google Scholar 

  • McHugh MP (2003) Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sports 13:88–97

    Article  PubMed  Google Scholar 

  • McHugh MP, Connolly DAJ, Eston RG, Gleim GW (1999) Exercise-induced muscle damage and potential mechanisms for the repeated bout effect. Sports Med 27:157–170

    Article  CAS  PubMed  Google Scholar 

  • Newton MJ, Morgan GT, Sacco P, Chapman DW, Nosaka K (2008) Comparison of responses to strenuous eccentric exercise of the elbow flexors between resistance-trained and untrained men. J Strength Cond Res 22:597–607

    Article  PubMed  Google Scholar 

  • Nosaka K, Clarkson PM (1996) Changes in indicators of inflammation after eccentric exercise of the elbow flexors. Med Sci Sports Exerc 28:953–961

    CAS  PubMed  Google Scholar 

  • Nosaka K, Newton M (2002) Difference in the magnitude of muscle damage between maximal and submaximal eccentric loading. J Strength Cond Res 16:202–208

    PubMed  Google Scholar 

  • Nosaka K, Sakamoto K, Newton M, Sacco P (2001) The repeated bout effect of reduced-load eccentric exercise on elbow flexor muscle damage. Eur J Appl Physiol 85(1–2):34–40

    Article  CAS  PubMed  Google Scholar 

  • Orchard J, Seward H (2002) Epidemiology of injuries in the Australian football league, seasons 1997–2000. Br J Sports Med 36:39–44

    Article  CAS  PubMed  Google Scholar 

  • Paschalis V, Koutedakis Y, Baltzopoulos V, Mougios V, Jamurtas JZ, Giakas G (2005) Short vs. long length of rectus femoris during eccentric exercise in relation to muscle damage in healthy males. Clin Biomech 20:617–622

    Article  Google Scholar 

  • Perotto AO (1994) Anatomical guide for the electromyographer: the limbs and trunk, 3rd edn. Charles C Thomas Publisher, Springfield, Illinois

    Google Scholar 

  • Prior BM, Jayaraman RC, Reid RW, Cooper TG, Foley JM, Dudley GA, Meyer RA (2001) Biarticular and monoarticular muscle activation and injury in human quadriceps muscle. Eur J Appl Physiol 85:185–190

    Article  CAS  PubMed  Google Scholar 

  • Saka T, Akova B, Yazici Z, Sekir U, Gür H, Ozarda Y (2009) Difference in the magnitude of muscle damage between elbow flexors and knee extensors eccentric exercises. J Sports Sci Med 8:107–115

    Google Scholar 

  • Slavotinek JP, Verrall GM, Fon GT (2002) Hamstring injury in athletes: using MR imaging measurements to compare extent of muscle injury with amount of time lost from competition. Am J Roentgenol 179:1621–1628

    Google Scholar 

  • Slater H, Thériault E, Ronningen BO, Clark R, Nosaka K (2010) Exercise-induced mechanical hypoalgesia in musculotendinous tissues of the lateral elbow. Man Ther 15:66–73

    Article  PubMed  Google Scholar 

  • Visser JJ, Hoogkamer JE, Bobbert MF, Huijing PA (1990) Length and moment arm of human leg muscles as a function of knee and hip-joint angles. Eur J Appl Physiol Occup Physiol 61:453–460

    Article  CAS  PubMed  Google Scholar 

  • Wickiewicz TL, Roy RR, Powell PL, Edgerton VR (1983) Muscle architecture of the human lower limb. Clin Orthop Relat Res 179:275–283

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Council, Taiwan (NSC 98-2410-H-415-042) and Edith Cowan University, Australia. The authors would like to thanks Professor Tsai-Wei Huang, Department of Counseling at National Chiayi University, for his assistance with the statistical design and analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor C. Chen.

Additional information

Communicated by William Kraemer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T.C., Lin, KY., Chen, HL. et al. Comparison in eccentric exercise-induced muscle damage among four limb muscles. Eur J Appl Physiol 111, 211–223 (2011). https://doi.org/10.1007/s00421-010-1648-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1648-7

Keywords

Navigation