Skip to main content
Log in

2-Deoxy-d-glucose treatment changes the Golgi apparatus architecture without blocking synthesis of complex lipids

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The classic Golgi apparatus organization, an arrangement of highly ordered cisternal stacks with tubular–vesicular membrane specializations on both sides, is the functional image of a continuous flow of contents and membranes with input, metabolization, and output in a dynamic steady state. In response to treatment with 2-deoxy-d-glucose (2-DG), which lowers the cellular ATP level by about 70 % within minutes, this organization is rapidly replaced by tubular–glomerular membrane convolutes described as Golgi networks and bodies. 2-DG is a non-metabolizable glucose analogue and competitive inhibitor of glycolysis, which has become attractive in the context of therapeutic approaches for several kinds of tumors specifically targeting glycolysis in cancer. With the question of whether the functions of the Golgi apparatus in lipid synthesis would be influenced by the 2-DG-induced Golgi apparatus reorganization, we focused on lipid metabolism within the Golgi bodies. For this, we applied a fluorophore-labeled short-chain ceramide (BODIPY-Cer) in various combinations with 2-DG treatment to HepG2 cell cultures and followed uptake, enrichment and metabolization to higher ordered lipids. The cellular ATP status in each experiment was controlled with a bioluminescence assay, and the response of the Golgi apparatus was tracked by immunostaining of the trans-Golgi network protein TGN46. For electron microscopy, the fluorescent BODIPY-Cer signals were converted into electron-dense precipitates by photooxidation of diaminobenzidine (DAB); DAB precipitates labeled trans-Golgi areas in control cultures but also compartments at the periphery of the Golgi bodies formed in response to 2-DG treatment, thus indicating that concentration of ceramide takes place in spite of the Golgi apparatus reorganization. Lipid analyses by thin-layer chromatography (TLC) performed in parallel showed that BODIPY-Cer is not only concentrated in compartments of the 2-DG-induced Golgi bodies but is partly metabolized to BODIPY-sphingomyelin. Both, uptake and condensation of BODIPY-Cer and its conversion to complex lipids indicate that functions of the Golgi apparatus in the cellular lipid metabolism persist although the classic Golgi apparatus organization is abolished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aft RL, Zhang FW, Gius D (2002) Evaluation of 2-deoxy-d-glucose as a chemotherapeutic agent: mechanism of cell death. Br J Cancer 87:805–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Chandran S, Machamer CE (2008) Acute perturbations on Golgi organization impact de novo sphingomyelin synthesis. Traffic 9:1894–1904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chandran S, Machamer CE (2012) Inactivation of ceramide transfer protein during pro-apoptotic stress by Golgi disassembly and caspase cleavage. Biochem J 442:391–401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Z, Lu W, Garcia-Prieto C, Huang P (2007) The Warburg effect and its cancer therapeutic implications. J Bioenerg Biomembr 39:267–274

    Article  CAS  PubMed  Google Scholar 

  • D´Angelo G, Polishchuk E, Di Tullio G, Santoro M, di Campli A, Godi A, West G, Bielawski J, Chuang C-C, van der Spoel AC, Platt FM, Hannun YA, Polishchuk R, Mattjus P, De Matteis MA (2007) Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449:62–67

    Article  Google Scholar 

  • D´Angelo G, Uemura T, Chuang C-C, Polishchuk E, Santoro M, Ohvo-Rekila H, Sato T, Di Tullio G, Varriale A, D´Auria S, Daniele T, Capuani F, Johannes L, Mattjus P, Monti M, Pucci P, Williams RL, Burke JE, Platt FM, Harada A, De Matteis MA (2013) Vesicular and non-vesicular transport feed distinct glycosylation pathways in the golgi. Nature 501:116–121

    Article  Google Scholar 

  • De Matteis MA, Di Campli A, D´Angelo G (2007) Lipid-transfer proteins in membrane trafficking at the Golgi complex. Biochim Biophys Acta 1771:761–768

    Article  PubMed  Google Scholar 

  • Del Valle M, Robledo Y, Sandoval IV (1999) Membrane flow through the Golgi apparatus: specific disassembly of the cis-Golgi network by ATP-depletion. J Cell Sci 112:4017–4029

    PubMed  Google Scholar 

  • Dinter A, Berger EG (1998) Golgi-disturbing agents. Histochem Cell Biol 109:571–590

    Article  CAS  PubMed  Google Scholar 

  • Duran JM, Campelo F, van Gallen J, Sachsenheimer T, Sot J, Egorov MV, Rentero C, Enrich C, Polishchuk RS, Goni FM, Brügger B, Wieland F, Malhotra V (2012) Sphingomyelin organization is required for vesicle biogenesis at the Golgi complex. EMBO J 31:4535–4546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dwarakanath BS (2009) Cytotoxicity, radiosensitization, and chemosensitization of tumor cells by 2-deoxy-d-glucose in vitro. J Cancer Rest Ther, Suppl 1:S27

    Article  Google Scholar 

  • Estan MC, Clavino E, de Blas E, del Carmen Boyano-Adanez M, Mena ML, Gomez-Gomez M, Rial E, Aller P (2012) 2-Deoxy-d-glucose cooperates with arsenic trioxide to induce apoptosis in leukaemia cells: involvement of IGF-1R-regulated Akt/mTOR, MEK/ERK and LKB-1/AMPK signalling pathways. Biochemical Pharmacol 84:1604–1616

    Article  CAS  Google Scholar 

  • Futerman AH (2006) Intracellular trafficking of sphingolipids: relationship to biosynthesis. Biochim Biophys Acta 1758:1885–1892

    Article  CAS  PubMed  Google Scholar 

  • Gaietta GM, Giepmans BN, Deerick TJ, Smith WB, Ngan L, Llopis J, Adams SR, Tsien RY, Ellisman MH (2006) Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy. Proc Natl Acad Sci USA 103:17777–17782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garriga-Canut M, Schoenike B, Qasi R, Bergendahl K, Daley TJ, Pfender RM, Morrison JF, Ockuly J, Stafstrom C, Sutula T, Roopra A (2006) 2-Deoxy-d-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nature Neurosci 9:1382–1387

    Article  CAS  PubMed  Google Scholar 

  • Gault CR, Obeid LM, Hannun YA (2010) An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 688:1–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldberg L, Israeli R, Kloog Y (2012) FTS and 2-DG induce pancreatic cancer cell death and tumor shrinkage in mice. Cell Death Dis 3:e284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grabenbauer M (2012) Correlative light and electron microscopy of GFP. Methods Cell Biol 111:117–138

    Article  CAS  PubMed  Google Scholar 

  • Grabenbauer M, Geerts WJ, Fernadez-Rodriguez J, Hoenger A, Koster AJ, Nilsson T (2005) Correlative microscopy and electron tomography of GFP through photooxidation. Nat Methods 2:857–862

    Article  CAS  PubMed  Google Scholar 

  • Grieb P, Gordon-Krajcer W, Frontczak-Baniewicz M, Walski M, Ryba MS, Kryczka T, Fiedorowicz M, Kulinowski P, Sulek Z, Majcher K, Jasinski A (2004) 2-Deoxyglucose induces beta-APP overexpression, tau hyperphosphorylation and expansion of the trans-part of the golgi complex in rat cerebral cortex. Acta Neurobiol Exp 64:491–502

    Google Scholar 

  • Guenther GG, Peralta ER, Rosales KR, Wong SY, Siskind LJ, Edinger AL (2008) Ceramide starves cells to death by downregulating nutrient transporter proteins. Proc Natl Acad Sci USA 105:17402–17407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanada K (2014) Co-evolution of sphingomyelin and the ceramide transport protein CERT. Biochim Biophys Acta 1841:704–719

    Article  CAS  PubMed  Google Scholar 

  • Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M, Nishijima M (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature 426:803–809

    Article  CAS  PubMed  Google Scholar 

  • Hanada K, Kumagai K, Tomishige N, Kawano M (2007) CERT and intracellular trafficking of ceramide. Biochim Biophys Acta 1771:644–653

    Article  CAS  PubMed  Google Scholar 

  • Hannun YA, Obeid LM (2008) Principles of bioactive lipid signaling: lessons from sphingolipids. Nature Rev Mol Cell Biol 9:139–150

    Article  CAS  Google Scholar 

  • Holthuis JCM, Menon AK (2014) Lipid landscapes and pipelines in membrane homeostasis. Nature 510:48–57

    Article  CAS  PubMed  Google Scholar 

  • Huang YY, Liu H, Li Y, Pu LJ, Jiang CC, Xu JC, Jiang ZW (2013) Down-regulation of RIP1 by 2-deoxy-d-glucose sensitizes breast cancer cells to TRAIL-induced apoptosis. Eur J Pharmacol 705:26–34

    Article  CAS  PubMed  Google Scholar 

  • Jain V, Kalia V, Sharma R, Maharajan V, Menon M (1985) Effects of 2-deoxy-d-glucose on glycolysis, proliferation kinetics and radiation response of human cancer cells. Int J Radiat Oncol Biol Phys 11:943–950

    Article  CAS  PubMed  Google Scholar 

  • Kang HT, Hwang ES (2006) 2-Deoxyglucose: an anticancer and antiviral therapeutic, but not any more a low glucose mimetic. Life Sci 78:1392–1399

    Article  CAS  PubMed  Google Scholar 

  • Kaplan O, Lyon R, Faustino P, Straka E, Cohen J (1990) Effects of 2-deoxyglucose on drug-sensitive and drug-resistant human breast cancer cells: toxicity and magnetic resonance spectroscopy of metabolism. Cancer Res 50:544–551

    CAS  PubMed  Google Scholar 

  • Kumagai K, Kawano-Kawada M, Hanadu K (2014) Phosphoregulation of the ceramide transport protein CERT at serine 315 in the interaction with VAMP-associated protein (VAP) for inter-organelle trafficking of ceramide in mammalian cells. J Biol Chem 289:10748–10760

    Article  CAS  PubMed  Google Scholar 

  • Kurtoglu M, Gao N, Shang J, Maher JC, Lehrman MA, Wangpaichitr M, Savaraj N, Lane AN, Lampidis TJ (2007) Under normoxia, 2-deoxy-d-glucose elicits cell death in selected tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Mol Cancer Ther 6:3049–3058

    Article  CAS  PubMed  Google Scholar 

  • Laszlo J, Landau B, Wight K, Burk D (1969) The effect of glucose analogues on the metabolism of human leukemia cells. J Natl Cancer Inst 21:475–483

    Google Scholar 

  • Levine T, Loewen C (2006) Inter-organelle membrane contact sites: through a glass, darkly. Curr Opin Cell Biol 18:371–378

    Article  CAS  PubMed  Google Scholar 

  • Loar P, Wahl H, Kshirsagar M, Gossner G, Griffith K, Liu R (2010) Inhibition of glycolysis enhances cisplatin-induced apoptosis in ovarian cancer cells. Am J Obstetrics Gynecol 202:371.e1-8

    Google Scholar 

  • Maranto AR (1982) Neuronal mapping: a photooxidation reaction makes lucifer yellow useful for electron microscopy. Science 217:953–955

    Article  CAS  PubMed  Google Scholar 

  • Meisslitzer-Ruppitsch C, Vetterlein M, Stangl H, Maier S, Neumüller J, Freissmuth M, Pavelka M, Ellinger A (2008) Electron microscopic visualization of fluorescent signals in cellular compartments and organelles by means of DAB-photoconversion. Histochem Cell Biol 130:407–419

    Article  PubMed Central  CAS  Google Scholar 

  • Meisslitzer-Ruppitsch C, Röhrl C, Neumüller J, Pavelka M, Ellinger A (2009) Photooxidation technology for correlated light- and electron microscopy. J Microsc 235:322–335

    Article  CAS  PubMed  Google Scholar 

  • Meisslitzer-Ruppitsch C, Röhrl C, Ranftler C, Neumüller J, Vetterlein M, Ellinger A, Pavelka M (2011) The ceramide-enriched trans-Golgi compartments reorganize together with other parts of the Golgi apparatus in response to ATP-depletion. Histochem Cell Biol 135:159–171

    Article  CAS  PubMed  Google Scholar 

  • Molnar Z, Bekesi JG (1972) Cytotoxic effects of d-glucosamine on the ultrastructures of normal and neoplastic tissues in vivo. Cancer Res 32:756–765

    CAS  PubMed  Google Scholar 

  • Nomura K, Imai H, Koumura T, Nakagawa Y (1999) Mitochondrial phospholipid hydroperoxide glutathione peroxidase suppresses apoptosis mediated by a mitochondrial death pathway. J Biol Chem 274:29294–29302

    Article  CAS  PubMed  Google Scholar 

  • Obeid LM, Hannun YA (2003) Ceramide, stress and a ‘LAG’ in aging. Sci Aging Knowl Environ 39:PE27–PE29302

    Google Scholar 

  • Pagano RE, Martin OC, Kang HC, Haugland RP (1991) A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. J Cell Biol 113:1267–1279

    Article  CAS  PubMed  Google Scholar 

  • Pavelka M, Ellinger A (1993) Early and late transformations occurring at organelles of the golgi area under the influence of brefeldin A: an ultrastructural and lectin cytochemical study. J Histochem Cytochem 41:1031–1042

    Article  CAS  PubMed  Google Scholar 

  • Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646

    Article  CAS  PubMed  Google Scholar 

  • Priebe A, Tan L, Wahl H, Kueck A, He G, Kwok R, Opipari A, Liu R (2011) Glucose deprivation activates AMPK and induces cell death through modulation of Akt in ovarian cancer cells. Gynecologic Oncol 122:389–395

    Article  CAS  Google Scholar 

  • Ramirez-Peinado S, Alcazar-Limones F, Lagares-Tena L, El Mjiyad N, Caro-Maldonado A, Tirado OM, Munoz-Pinedo C (2011) 2-Deoxyglucose induces Noxa-dependent apoptosis in alveolar rhabdomyosarcoma. Cancer Res 71:6796–6806

    Article  CAS  PubMed  Google Scholar 

  • Ranftler C, Auinger P, Meisslitzer-Ruppitsch C, Neumüller J, Ellinger A, Pavelka M (2013a) Electron microscopy of endocytic pathways. In: Taatjes DJ, Roth J (eds) Springer protocols, Cell imaging techniques. Humana Press, New York, pp 437–447

    Google Scholar 

  • Ranftler C, Meisslitzer-Ruppitsch C, Rouhani D, Ellinger A, Neumüller J, Pavelka M (2013b) Golgi apparatus dynamics in response to treatments with 2-deoxy-d-glucose and brefeldin A. Golgi Apparatus Symposium Bad Ischl, Abstract Booklet p 105

  • Röhrl C, Pagler TA, Strobl W, Ellinger A, Neumüller J, Pavelka M, Stangl H, Meisslitzer-Ruppitsch C (2009) Characterization of endocytic compartments after holo-high density lipoprotein particle uptake in HepG2 cells. Histochem Cell Biol 133:261–272

    Article  PubMed Central  PubMed  Google Scholar 

  • Röhrl C, Meisslitzer-Ruppitsch C, Bittman R, Li Z, Pabst G, Prassl R, Strobl W, Neumüller J, Ellinger A, Pavelka M, Stangl H (2012) Combined light- and electron microscopy using diaminobenzidine photooxidation to monitor trafficking of lipids derived from lipoprotein particles. Curr Pharmac Biotech 13:331–340

    Article  Google Scholar 

  • Shakor ABA, Taniguchi M, Kitatani K, Hashimoto M, Asano S, Hayashi A, Nomura K, Bielawski J, Bielawska A, Watanabe K, Kobayashi T, Igarashi Y, Umehara H, Takeya H, Okazaki T (2011) Sphingomyelin synthase 1-generated sphingomyelin plays an important role in transferrin trafficking and cell proliferation. J Biol Chem 286:36053–36062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spessott W, Uliana A, Maccioni HJF (2010) Cog2 null mutant CHO cells show defective sphingomyelin synthesis. J Biol Chem 285:41472–41482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stafstrom CE, Ockuly JC, Murphree L, Valley MT, Roopra A, Sutula TP (2009) Anticonvulsant and antiepileptic actions of 2-deoxy-d-glucose in epileptic models. Ann Neurol 65:435–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strous GJ, Berger EG, van Kerkhof P, Bosshart H, Berger B, Geuze HJ (1991) Brefeldin A induces a microtuble-dependent fusion of galactosyltrasferase-containing vesicles with the rough endoplasmic reticulum. Biol Cell 71:25–31

    Article  CAS  PubMed  Google Scholar 

  • Suganuma K, Miwa H, Imai N, Shikami M, Gotou M, Goto M, Mizuno S, Takahashi M, Yamamoto H, Hiramatsu A, Wakabayashi M, Watarai M, Hanamura I, Imamura A, Mihara H, Nitta M (2010) Energy metabolism of leukemia cells: glycolysis versus oxidative phosphorylation. Leuk Lymphoma 51:2112–2119

    Article  CAS  PubMed  Google Scholar 

  • Tafesse FG, Ternes P, Holthuis JCM (2006) The multigenic sphingomyelin synthase family. J Biol Chem 281:29421–29425

    Article  CAS  PubMed  Google Scholar 

  • Takizawa PA, Yucel JK, Veit B, Faulkner DJ, Deerinck T, Soto G, Ellisman M, Malhotra V (1993) Complete vesiculation of Golgi membranes and inhibition of protein transport by a novel sea sponge metabolite, ilimaquinone. Cell 73:1079–1090

    Article  CAS  PubMed  Google Scholar 

  • Tartakoff AM, Vassalli P, Detraz M (1977) Plasma cell immunoglobuline secretion: arrest is accompanied by alterations of the Golgi complex. J Exp Med 146:1332–1345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tidhar R, Futerman AH (2013) The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochim Biophys Acta 1833:2511–2518

    Article  CAS  PubMed  Google Scholar 

  • Warburg O (1930) The metabolism of tumors. Constable & Co, London

    Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  • Wick A, Drury DR, Nakada HI, Wolfe JB (1957) Localization of the primary metabolic block produced by 2-deoxyglucose. J Biol Chem 224:963–969

    CAS  PubMed  Google Scholar 

  • Wollmann E, Vetterlein M, Ellinger A, Neumüller J, Pavelka M (2009) Three dimensional analysis of the Golgi apparatus: reorganizations in response to ATP-depletion and replenishment. In: Pabst MA, Zellnig G (eds) MC2009, vol 2, pp 51-52. doi:10.3217/978-3-85125-062-6

  • Wu H, Zhu H, Liu DX, Niu TK, Ren X, Patel R, Hait WN, Yang JM (2009) Silencing of elongation factor-2 kinase potentiates the effect of 2-Deoxy-d-glucose against human glioma. Cancer Res 69:2453–2460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xi H, Kurtoglu M, Liu H, Wangpaichitr M, You M, Liu X, Savarj N, Lampidis TJ (2011) 2-deoxy-d-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion. Cancer Chemother Pharmacol 67:899–910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang XD, Deslandes E, Villedieu M, Poulain L, Duval M, Gauduchon P, Schwartz L, Icard P (2006) Effect of 2-deoxy-d-glucose on various malignant cell lines in vitro. Anticancer Res 26:3561–3566

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors cordially thank Mrs. Regina Wegscheider, Mrs Ingrid Hassl and Mag. Beatrix Mallinger for their excellent technical assistance, Mr Peter Auinger for HPF sample preparation and Mr Ulrich Kaindl and Mr Thomas Nardelli for preparation of the figures and the artwork. The authors are very grateful to Prof. Walter Rossmanith for providing the possibility to use the Typhoon 8600 imager for analyses of the TLC data and for his help and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolf Ellinger.

Additional information

Carmen Ranftler and Claudia Meisslitzer-Ruppitsch have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranftler, C., Meisslitzer-Ruppitsch, C., Stangl, H. et al. 2-Deoxy-d-glucose treatment changes the Golgi apparatus architecture without blocking synthesis of complex lipids. Histochem Cell Biol 143, 369–380 (2015). https://doi.org/10.1007/s00418-014-1297-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1297-8

Keywords

Navigation