Skip to main content

Advertisement

Log in

Antifibrotic effects of pirfenidone on Tenon’s fibroblasts in glaucomatous eyes: comparison with mitomycin C and 5-fluorouracil

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate the antifibrotic effects of pirfenidone (PFD) on primary cultured human Tenon’s fibroblasts (HTFs) from primary open-angle glaucoma (POAG) eyes, compared to mitomicin C (MMC) and 5-fluorouracil (5-FU).

Materials and methods

Samples of human Tenon’s capsule were obtained during respective surgeries from three groups of patients: patients with cataract (CAT group), patients with POAG who underwent glaucoma filtration surgery (GFS) (POAG1 group), and patients with POAG who underwent GFS due to failed bleb of previous GFS (POAG2 group). Cell toxicity, cell migration, and the expression level of α-smooth muscle actin (α-SMA) protein were evaluated in primary cultured HTFs from the three patient groups after treatment (PFD, MMC, or 5-FU).

Results

Overall, cell viability after PFD treatment was higher compared to MMC treatment (82.3 ± 5.1 % vs 56.7 ± 3.8 %; p = 0.001) and comparable to 5-FU treatment (82.3 ± 5.1 % vs 85.7 ± 10.7 %, p = 0.214) at the same concentration (0.4 mg/ml). Both 0.3 mg/ml PFD and 0.1 mg/ml MMC inhibited cell migration compared to control (without treatment) cells (p = 0.014 and 0.005, respectively), while 0.2 mg/ml 5-FU showed the highest degree of cell migration among the three agents in the POAG1 group (PFD vs MMC vs 5-FU; 29.5 ± 2.1 % vs 34.5 ± 0.7 % vs 76.0 ± 8.5 %, PFD vs MMC; p = 1.000, PFD vs 5-FU; p = 0.008, MMC vs 5-FU; p = 0.011). PFD (0.1 or 0.3 mg/ml) and MMC (0.05 and 0.1 mg/ml) treatment significantly reduced the protein expression level of α-SMA in the POAG 1 group (all p < 0.05), and the α-SMA protein level following treatment with 0.3 mg/ml PFD was lower than that of 0.1 mg/ml MMC (p = 0.040).

Conclusion

PFD showed less cytotoxicity compared to MMC. PFD and MMC inhibited cell migration and reduced α-SMA protein expression levels, while 5-FU showed neither inhibition of cell migration nor reduction in α-SMA expression level. These findings indicate PFD as a potential adjunctive antifibrotic agent to prevent bleb failure during GFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267. doi:10.1136/bjo.2005.081224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M, Early Manifest Glaucoma Trial G (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120:1268–1279

    Article  PubMed  Google Scholar 

  3. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Gordon MO (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120:701–713, discussion 829–730

    Article  PubMed  Google Scholar 

  4. Lee DA (1994) Antifibrosis agents and glaucoma surgery. Invest Ophthalmol Vis Sci 35:3789–3791

    CAS  PubMed  Google Scholar 

  5. Addicks EM, Quigley HA, Green WR, Robin AL (1983) Histologic characteristics of filtering blebs in glaucomatous eyes. Arch Ophthalmol 101:795–798

    Article  CAS  PubMed  Google Scholar 

  6. Jampel HD, McGuigan LJ, Dunkelberger GR, L'Hernault NL, Quigley HA (1988) Cellular proliferation after experimental glaucoma filtration surgery. Arch Ophthalmol 106:89–94

    Article  CAS  PubMed  Google Scholar 

  7. Colotto A, Falsini B, Cesari L, Cermola S, Iarossi G, Salgarello T, Scullica L (1997) Antimetabolites in glaucoma surgery: our experiences and results. Acta Ophthalmol Scand Suppl 224:58–59

    PubMed  Google Scholar 

  8. Ren J, Shin DH, O'Grady JM, Kim YY, Juzych MS, Hughes BA, Kim C, Glover BK (1998) Long-term outcome of primary glaucoma triple procedure with adjunctive 5-fluorouracil. Graefes Arch Clin Exp Ophthalmol 236:501–506

    Article  CAS  PubMed  Google Scholar 

  9. Landers J, Martin K, Sarkies N, Bourne R, Watson P (2012) A twenty-year follow-up study of trabeculectomy: risk factors and outcomes. Ophthalmology 119:694–702. doi:10.1016/j.ophtha.2011.09.043

    Article  PubMed  Google Scholar 

  10. Manche EE, Afshari MA, Singh K (1998) Delayed corneal epitheliopathy after antimetabolite-augmented trabeculectomy. J Glaucoma 7:237–239

    Article  CAS  PubMed  Google Scholar 

  11. Belyea DA, Dan JA, Stamper RL, Lieberman MF, Spencer WH (1997) Late onset of sequential multifocal bleb leaks after glaucoma filtration surgery with 5-fluorouracil and mitomycin C. Am J Ophthalmol 124:40–45

    Article  CAS  PubMed  Google Scholar 

  12. Jampel HD, Pasquale LR, Dibernardo C (1992) Hypotony maculopathy following trabeculectomy with mitomycin C. Arch Ophthalmol 110:1049–1050

    Article  CAS  PubMed  Google Scholar 

  13. Stamper RL, McMenemy MG, Lieberman MF (1992) Hypotonous maculopathy after trabeculectomy with subconjunctival 5-fluorouracil. Am J Ophthalmol 114:544–553

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki R, Nakayama M, Satoh N (1999) Three types of retinal bleeding as a complication of hypotony after trabeculectomy. Ophthalmologica 213:135–138

    Article  CAS  PubMed  Google Scholar 

  15. Schraermeyer U, Diestelhorst M, Bieker A, Theisohn M, Mietz H, Ustundag C, Joseph G, Krieglstein GK (1999) Morphologic proof of the toxicity of mitomycin C on the ciliary body in relation to different application methods. Graefes Arch Clin Exp Ophthalmol 237:593–600

    Article  CAS  PubMed  Google Scholar 

  16. Akova YA, Bulut S, Dabil H, Duman S (1999) Late bleb-related endophthalmitis after trabeculectomy with mitomycin C. Ophthalmic Surg Lasers 30:146–151

    CAS  PubMed  Google Scholar 

  17. Franks WA, Hitchings RA (1991) Complications of 5--fluorouracil after trabeculectomy. Eye (Lond) 5(Pt 4):385–389. doi:10.1038/eye.1991.63

    Article  Google Scholar 

  18. Schaefer CJ, Ruhrmund DW, Pan L, Seiwert SD, Kossen K (2011) Antifibrotic activities of pirfenidone in animal models. Eur Respir Rev 20:85–97. doi:10.1183/09059180.00001111

    Article  CAS  PubMed  Google Scholar 

  19. Richeldi L (2012) Assessing the treatment effect from multiple trials in idiopathic pulmonary fibrosis. Eur Respir Rev 21:147–151. doi:10.1183/09059180.00000912

    Article  PubMed  Google Scholar 

  20. Xaubet A, Serrano-Mollar A, Ancochea J (2014) Pirfenidone for the treatment of idiopathic pulmonary fibrosis. Expert Opin Pharmacother 15:275–281. doi:10.1517/14656566.2014.867328

    Article  CAS  PubMed  Google Scholar 

  21. Potts J, Yogaratnam D (2013) Pirfenidone: a novel agent for the treatment of idiopathic pulmonary fibrosis. Ann Pharmacother 47:361–367. doi:10.1345/aph.1R337

    Article  PubMed  Google Scholar 

  22. Giri SN, Leonard S, Shi X, Margolin SB, Vallyathan V (1999) Effects of pirfenidone on the generation of reactive oxygen species in vitro. J Environ Pathol Toxicol Oncol 18:169–177

    CAS  PubMed  Google Scholar 

  23. Lin X, Yu M, Wu K, Yuan H, Zhong H (2009) Effects of pirfenidone on proliferation, migration, and collagen contraction of human Tenon's fibroblasts in vitro. Invest Ophthalmol Vis Sci 50:3763–3770. doi:10.1167/iovs.08-2815

    Article  PubMed  Google Scholar 

  24. Lee K, Young Lee S, Park SY, Yang H (2014) Antifibrotic effect of pirfenidone on human pterygium fibroblasts. Curr Eye Res 39:680–685. doi:10.3109/02713683.2013.867063

    Article  CAS  PubMed  Google Scholar 

  25. Zhong H, Sun G, Lin X, Wu K, Yu M (2011) Evaluation of pirfenidone as a new postoperative antiscarring agent in experimental glaucoma surgery. Invest Ophthalmol Vis Sci 52:3136–3142. doi:10.1167/iovs.10-6240

    Article  CAS  PubMed  Google Scholar 

  26. Skuta GL, Parrish RK 2nd (1987) Wound healing in glaucoma filtering surgery. Surv Ophthalmol 32:149–170

    Article  CAS  PubMed  Google Scholar 

  27. Esson DW, Neelakantan A, Iyer SA, Blalock TD, Balasubramanian L, Grotendorst GR, Schultz GS, Sherwood MB (2004) Expression of connective tissue growth factor after glaucoma filtration surgery in a rabbit model. Invest Ophthalmol Vis Sci 45:485–491

    Article  PubMed  Google Scholar 

  28. Andreev K, Zenkel M, Kruse F, Junemann A, Schlotzer-Schrehardt U (2006) Expression of bone morphogenetic proteins (BMPs), their receptors, and activins in normal and scarred conjunctiva: role of BMP-6 and activin-A in conjunctival scarring? Exp Eye Res 83:1162–1170. doi:10.1016/j.exer.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  29. Kolb M, Xing Z, Gauldie J (2002) Growth factors. In: Barnes P, Drazen J, Rennard S, Thomson N (eds) Asthma and COPD. Academic Press, London, pp 283–289

    Chapter  Google Scholar 

  30. Varga J, Rosenbloom J, Jimenez SA (1987) Transforming growth factor beta (TGF beta) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts. Biochem J 247:597–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Overall CM, Wrana JL, Sodek J (1989) Independent regulation of collagenase, 72-kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-beta. J Biol Chem 264:1860–1869

    CAS  PubMed  Google Scholar 

  32. Fleenor DL, Shepard AR, Hellberg PE, Jacobson N, Pang IH, Clark AF (2006) TGFbeta2-induced changes in human trabecular meshwork: implications for intraocular pressure. Invest Ophthalmol Vis Sci 47:226–234. doi:10.1167/iovs.05-1060

    Article  PubMed  Google Scholar 

  33. Kuchtey J, Kunkel J, Burgess LG, Parks MB, Brantley MA Jr, Kuchtey RW (2014) Elevated transforming growth factor beta1 in plasma of primary open-angle glaucoma patients. Invest Ophthalmol Vis Sci 55:5291–5297. doi:10.1167/iovs.14-14578

    Article  PubMed Central  PubMed  Google Scholar 

  34. Prendes MA, Harris A, Wirostko BM, Gerber AL, Siesky B (2013) The role of transforming growth factor beta in glaucoma and the therapeutic implications. Br J Ophthalmol 97:680–686. doi:10.1136/bjophthalmol-2011-301132

    Article  PubMed  Google Scholar 

  35. McDonnell F, O'Brien C, Wallace D (2014) The role of epigenetics in the fibrotic processes associated with glaucoma. J Ophthalmol 2014:750459. doi:10.1155/2014/750459

    PubMed Central  PubMed  Google Scholar 

  36. Lama PJ, Fechtner RD (2003) Antifibrotics and wound healing in glaucoma surgery. Surv Ophthalmol 48:314–346

    Article  PubMed  Google Scholar 

  37. Conte E, Gili E, Fagone E, Fruciano M, Iemmolo M, Vancheri C (2014) Effect of pirfenidone on proliferation, TGF-beta-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts. Eur J Pharm Sci 58:13–19. doi:10.1016/j.ejps.2014.02.014

    Article  CAS  PubMed  Google Scholar 

  38. Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C (2001) Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12:2730–2741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Engel LA, Muether PS, Fauser S, Hueber A (2014) The effect of previous surgery and topical eye drops for primary open-angle glaucoma on cytokine expression in aqueous humor. Graefes Arch Clin Exp Ophthalmol 252:791–799. doi:10.1007/s00417-2607-5

    Article  CAS  PubMed  Google Scholar 

  40. Shi Q, Liu X, Bai Y, Cui C, Li J, Li Y, Hu S, Wei Y (2011) In vitro effects of pirfenidone on cardiac fibroblasts: proliferation, myofibroblast differentiation, migration and cytokine secretion. PLoS One 6, e28134. doi:10.1371/journal.pone.0028134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Singh K, Egbert PR, Byrd S, Budenz DL, Williams AS, Decker JH, Dadzie P (1997) Trabeculectomy with intraoperative 5-fluorouracil vs mitomycin C. Am J Ophthalmol 123:48–53

    Article  CAS  PubMed  Google Scholar 

  42. Singh K, Mehta K, Shaikh NM, Tsai JC, Moster MR, Budenz DL, Greenfield DS, Chen PP, Cohen JS, Baerveldt GS, Shaikh S (2000) Trabeculectomy with intraoperative mitomycin C versus 5-fluorouracil. Prospective randomized clinical trial. Ophthalmology 107:2305–2309

    Article  CAS  PubMed  Google Scholar 

  43. Palanca-Capistrano AM, Hall J, Cantor LB, Morgan L, Hoop J, WuDunn D (2009) Long-term outcomes of intraoperative 5-fluorouracil versus intraoperative mitomycin C in primary trabeculectomy surgery. Ophthalmology 116:185–190. doi:10.1016/j.ophtha.2008.08.009

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

All authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Il Moon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, J.H., Sung, K.R., Shin, J.A. et al. Antifibrotic effects of pirfenidone on Tenon’s fibroblasts in glaucomatous eyes: comparison with mitomycin C and 5-fluorouracil. Graefes Arch Clin Exp Ophthalmol 253, 1537–1545 (2015). https://doi.org/10.1007/s00417-015-3068-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3068-1

Keywords

Navigation