Skip to main content

Advertisement

Log in

Acute central serous chorioretinopathy: a correlation study between fundus autofluorescence and spectral-domain OCT

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the correlation between fundus autofluorescence (FAF) and spectral-domain OCT (SD-OCT) morphological analysis in eyes with acute central serous chorioretinopathy (CSCR).

Methods

Thirty-one patients with a first episode of CSCR and symptom duration of less than 6 weeks were prospectively enrolled. FAF and SD-OCT examination were performed at baseline and at 2-month intervals. Main outcome measure was the correlation between FAF and SD-OCT retinal morphology.

Results

At baseline, 30/31 and 29/31 eyes showed a macular hypo-AF, corresponding to the neurosensory retinal detachment (SRD), on shortwave-FAF (SW-FAF) and near-infrared-FAF (NIR-FAF), respectively. While the SRD resolved, both FAF techniques showed a granular hyper-AF in 31 eyes. At first examination, SD-OCT confirmed the SRD with a photoreceptor outer-segment (OS) elongation in all cases. During SRD resolution, the photoreceptor layer appeared thicker and fragmented. Multiple hyper-reflective precipitates were detected in the outer plexiform and nuclear layer and between the photoreceptors and appeared colocalized with the hyper-AF dots composing the granular hyper-AF. After SRD resolution, the hypo-AF area reverted to a normal pattern on SW-FAF in all eyes and in 25/31 on NIR-FAF. Examination at 12 months showed that the granular hyper-AF was still detectable in 54 % eyes, whereas 6/31 eyes showed hypo-AF dots on NIR-FAF. On SD-OCT, the junction IS/OS was identifiable in 11/31 eyes soon after the SRD resolution and appeared completely restored in all patients at the final visit.

Conclusion

The simultaneous acquisition of FAF and SD-OCT provides detailed findings of retinal abnormalities of CSCR and may help to understand the evolving process linked to CSCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Guyer DR, Yannuzzi LA, Slakter JS, Sorenson JA, Ho A, Orlock D (1994) Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch Ophthalmol 112:1057–62

    Article  CAS  PubMed  Google Scholar 

  2. Gilbert CM, Owens SL, Smith PD, Fine SL (1984) Long-term follow-up of central serous chorioretinopathy. Br J Ophthalmol 68:815–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Baran NV, Gürlü VP, Esgin H (2005) Long-term macular function in eyes with central serous chorioretinopathy. Clin Exp Ophthalmol 33:369–72

    Article  Google Scholar 

  4. Spaide RF, Goldbaum M, Wong DW, Tang KC, Iida T (2003) Serous detachment of the retina. Retina 23:820–46

    Article  PubMed  Google Scholar 

  5. Hayashi K, Hasegawa Y, Tokoro T (1986) Indocyanine green angiography of central serous chorioretinopathy. Int Ophthalmol 9:37–41

    Article  CAS  PubMed  Google Scholar 

  6. Spaide RF, Hall L, Haas A et al (1996) Indocyanine green videoangiography of older patients with central serous chorioretinopathy. Retina 16:203–213

    Article  CAS  PubMed  Google Scholar 

  7. Spaide RF, Campeas L, Haas A et al (1996) Central serous chorioretinopathy in younger and older adults. Ophthalmology 103:2070–2079, discussion 2079–2080

    Article  CAS  PubMed  Google Scholar 

  8. Iida T, Kishi S, Hagimura N, Shimizu K (1999) Persistent and bilateral choroidal vascular abnormalities in central serous chorioretinopathy. Retina 19:508–512

    Article  CAS  PubMed  Google Scholar 

  9. Park SY, Kim SM, Song YM, Sung J, Ham DI (2013) Retinal thickness and volume measured with enhanced depth imaging optical coherence tomography. Am J Ophthalmol 156:557–566, e2

    Article  PubMed  Google Scholar 

  10. Yang L, Jonas JB, Wei W (2013) Choroidal vessel diameter in central serous chorioretinopathy. Acta Ophthalmol 91:e358–62

    Article  PubMed  Google Scholar 

  11. Imamura Y, Fujiwara T, Margolis R, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29:1469–73

    Article  PubMed  Google Scholar 

  12. Sarna T, Burke JM, Korytowski W et al (2003) Loss of melanin from human RPE with aging: possible role of melanin photooxidation. Exp Eye Res 76:89–98

    Article  CAS  PubMed  Google Scholar 

  13. Loo RH, Scott IU, Flynn HW Jr et al (2002) Factors associated with reduced visual acuity during long-term follow-up of patients with idiopathic central serous chorioretinopathy. Retina 22:19–24

    Article  PubMed  Google Scholar 

  14. Imamura Y, Fujiwara T, Spaide RF (2011) Fundus autofluorescence and visual acuity in central serous chorioretinopathy. Ophthalmology 118:700–5

    Article  PubMed  Google Scholar 

  15. Ayata A, Tatlipinar S, Kar T, Unal M, Ersanli D, Bilge AH (2009) Near-infrared and short-wavelength autofluorescence imaging in central serous chorioretinopathy. Br J Ophthalmol 93:79–82

    Article  CAS  PubMed  Google Scholar 

  16. Spaide R (2008) Autofluorescence from the outer retina and subretinal space: hypothesis and review. Retina 28:5–35

    Article  PubMed  Google Scholar 

  17. Eandi CM, Ober M, Iranmanesh R, Peiretti E, Yannuzzi LA (2005) Acute central serous chorioretinopathy and fundus autofluorescence. Retina 25:989–93

    Article  PubMed  Google Scholar 

  18. Spaide RF, Klancnik JM Jr (2005) Fundus autofluorescence and central serous chorioretinopathy. Ophthalmology 112:825–33

    Article  PubMed  Google Scholar 

  19. Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 36:718–29

    CAS  PubMed  Google Scholar 

  20. Von Rückmann A, Fitzke FW, Bird AC (1995) Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 79:407–12

    Article  Google Scholar 

  21. Eldred GE, Katz ML (1988) Fluorophores of the human retinal pigment epithelium:separation and spectral characterization. Exp Eye Res 47:71–86

    Article  CAS  PubMed  Google Scholar 

  22. Brunk UT, Wihlmark U, Wrigstad A, Roberg K, Nilsson SE (1995) Accumulation of lipofuscin within retinal pigment epithelial cells results in enhanced sensitivity to photo-oxidation. Gerontology 41(2):201–12

    Article  CAS  PubMed  Google Scholar 

  23. Hammer M, Richter S, Guehrs KH, Schweitzer D (2006) Retinal pigment epithelium cell damage by A2-E and its photo-derivatives. Mol Vis 12:1348–54

    CAS  PubMed  Google Scholar 

  24. Schütt F, Davies S, Kopitz J, Holz FG, Boulton ME (2000) Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 41:2303–8

    PubMed  Google Scholar 

  25. Bermann M, Schütt F, Holz FG, Kopitz J (2001) Does A2E, a retinoid component of lipofuscin and inhibitor of lysosomal degradative functions, directly affect the activity of lysosomal hydrolases? Exp Eye Res 72:191–5

    Article  CAS  PubMed  Google Scholar 

  26. Wang Z, Dillon J, Gaillard ER (2006) Antioxidant properties of melanin in retinal pigment epithelial cells. Photochem Photobiol 82:474–479

    Article  CAS  PubMed  Google Scholar 

  27. Boulton M, Dayhaw-Barker P (2001) The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye 15:384–389

    Article  CAS  PubMed  Google Scholar 

  28. Finnemann SC, Leung LW, Rodriguez-Boulan E (2002) The lipofuscin component A2E selectively inhibits phagolysosomal degradation of photoreceptor phospholipid by the retinal pigment epithelium. Proc Natl Acad Sci U S A 99:3842–3847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hoppe G, O’Neil J, Hoff HF, Sears J (2004) Products of lipid peroxidation induce missorting of the principal lysosomal protease in retinal pigment epithelium. Biochim Biophys Acta 1689:33–41

    Article  CAS  PubMed  Google Scholar 

  30. Schmitz-Valckenberg S, Holz FG, Bird AC, Spaide RF (2008) Fundus autofluorescence imaging: review and perspectives. Retina 28:385–409

    Article  PubMed  Google Scholar 

  31. Cardillo Piccolino F, Grosso A, Savini E (2009) Fundus autofluorescence in serpiginous choroiditis. Graefes Arch Clin Exp Ophthalmol 247:179–85

    Article  PubMed  Google Scholar 

  32. Roisman L, Lavinsky D, Magalhaes F et al (2011) Fundus autofluorescence and spectral domain OCT in central serous chorioretinopathy. J Ophthalmol 2011:706849

    Article  PubMed Central  PubMed  Google Scholar 

  33. Matsumoto H, Kishi S, Sato T, Mukai R (2011) Fundus autofluorescence of elongated photoreceptor outer segments in central serous chorioretinopathy. Am J Ophthalmol 151:617–623, e1

    Article  PubMed  Google Scholar 

  34. Framme C, Walter A, Gabler B, Roider J, Sachs HG, Gabel VP (2005) Fundus autofluorescence in acute and chronic-recurrent central serous chorioretinopathy. Acta Ophthalmol Scand 83:161–7

    Article  PubMed  Google Scholar 

  35. Sekiryu T, Iida T, Maruko I, Saito K, Kondo T (2010) Infrared fundus autofluorescence and central serous chorioretinopathy. Invest Ophthalmol Vis Sci 51:4956–62

    Article  PubMed  Google Scholar 

  36. Dinc UA, Tatlipinar S, Yenerel M, Görgün E, Ciftci F (2011) Fundus autofluorescence in acute and chronic central serous chorioretinopathy. Clin Exp Optom 94:452–7

    Article  PubMed  Google Scholar 

  37. Grierson I, Chisholm IA (1978) Clearance of debris from the iris through the drainage angle of the rabbit’s eye. Br J Ophthalmol 62:694–704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. McMenamin PG, Lee WR (1986) Ultrastructural pathology of melanomalytic glaucoma. Br J Ophthalmol 70:895–906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Maruko I, Iida T, Ojima A, Sekiryu T (2011) Subretinal dot-like precipitates and yellow material in central serous chorioretinopathy. Retina 31:759–65

    PubMed  Google Scholar 

  40. Kim SK, Kim SW, Oh J, Huh K (2013) Near-infrared and short-wavelength autofluorescence in resolved central serous chorioretinopathy: association with outer retinal layer abnormalities. Am J Ophthalmol 156:157–164, e2

    Article  PubMed  Google Scholar 

  41. Ozmert E, Batioğlu F (2009) Fundus autofluorescence before and after photodynamic therapy for chronic central serous chorioretinopathy. Ophthalmologica 223:263–8

    Article  PubMed  Google Scholar 

  42. Lindner E, Weinberger A, Kirschkamp T, El-Shabrawi Y, Barounig A (2012) Near-infrared autofluorescence and indocyanine green angiography in central serous chorioretinopathy. Ophthalmologica 227:34–8

    Article  CAS  PubMed  Google Scholar 

  43. Oh J, Kim SW, Kwon SS, Oh IK, Huh K (2012) Correlation of fundus autofluorescence gray values with vision and microperimetry in resolved central serous chorioretinopathy. Invest Ophthalmol Vis Sci 53:179–84

    Article  PubMed  Google Scholar 

  44. Yang L, Jonas JB, Wei W (2013) Optical coherence tomography-assisted enhanced depth imaging of central serous chorioretinopathy. Invest Ophthalmol Vis Sci 54:4659–65

    Article  PubMed  Google Scholar 

  45. Hua R, Liu L, Chen L (2014) The noninvasive predictive approach for choroidal vascular diffuse hyperpermeability in central serous chorioretinopathy: near-infrared reflectance and enhanced depth imaging. Photodiagnos Photodyn Ther 11:365–71

    Article  Google Scholar 

  46. Ferrara D, Mohler KJ, Waheed N, Adhi M, Liu JJ, Grulkowski I, Kraus MF, Baumal C, Hornegger J, Fujimoto JG, Duker JS (2014) En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy. Ophthalmology 121:719–26

    Article  PubMed Central  PubMed  Google Scholar 

  47. Lehmann M, Wolff B, Vasseur V, Martinet V, Manasseh N, Sahel JA, Mauget-Faÿsse M (2013) Retinal and choroidal changes observed with ‘En face’ enhanced-depth imaging OCT in central serous chorioretinopathy. Br J Ophthalmol 97:1181–6

    Article  PubMed  Google Scholar 

  48. Pang CE, Shah VP, Sarraf D, Freund KB (2014) Ultra-widefield imaging with autofluorescence and indocyanine green angiography in central serous chorioretinopathy. Am J Ophthalmol 158:362–371, e2

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research for this paper was financially supported by Ministry of Health and Fondazione Roma.

Conflict of interest statement

All authors contributing to the present paper certify that they have NO financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Iacono.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iacono, P., Battaglia, P.M., Papayannis, A. et al. Acute central serous chorioretinopathy: a correlation study between fundus autofluorescence and spectral-domain OCT. Graefes Arch Clin Exp Ophthalmol 253, 1889–1897 (2015). https://doi.org/10.1007/s00417-014-2899-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2899-5

Keywords

Navigation