Skip to main content

Advertisement

Log in

Enhanced depth imaging-OCT of the choroid: a review of the current literature

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

With the advent of enhanced depth imaging optical coherence tomography (EDI-OCT), detailed visualisation of the choroid in vivo is now possible. Measurements of choroidal thickness (CT) have also enabled new directions in research to study normal and pathological processes within the choroid. The aim of the present study is to review the current literature on choroidal imaging using EDI-OCT.

Methods

Studies were identified by a systematic search using Medline (http://www.ncbi.nlm.nih.gov/pubmed). Papers were also identified based on the reference lists of relevant publications. Papers were included in the review if the focus of the study involved imaging of the choroid using EDI-OCT.

Results

Recent studies have demonstrated successful imaging of the choroid and high reproducibility of measurements of CT using EDI-OCT. There are much data confirming that abnormalities in choroidal structure and function contribute to major ocular diseases and patterns of CT variation may be observed in certain disease states and may be influenced by treatment. However, it is not clear whether these variations are a contributing factor or a consequence of the disease.

Conclusion

While more invasive methods such as indocyanine green (ICG) angiography remain the gold standard for detecting abnormalities of the choroidal vasculature in normal eyes and disease states, EDI-OCT has become an important adjunctive clinical tool in providing three-dimensional anatomical information of the choroid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nickla D, Wallman J (2010) The multifunctional choroid. Prog Retin Eye Res 29(2):144–168

    PubMed Central  PubMed  Google Scholar 

  2. Parver L (1991) Temperature modulating action of choroidal blood flow. Eye 5:181–185

    PubMed  Google Scholar 

  3. Parver L, Auker C, Carpenter D (1980) Choroidal blood flow as a heat dissipating mechanism in the macula. Am J Ophthalmol 89:641–646

    CAS  PubMed  Google Scholar 

  4. Parver L, Auker C, Carpenter D (1982) The stabilizing effect of the choroidal circulation on the temperature environment of the macula. Retina 2:117–120

    CAS  PubMed  Google Scholar 

  5. Wallman J, Wildsoet C, Xu A, Gottlieb MD, Nickla DL, Marran L, Krebs W, Christensen AM (1995) Moving the retina: choroidal modulation of refractive state. Vis Res 35:37–50

    CAS  PubMed  Google Scholar 

  6. Wildsoet C, Wallman J (1995) Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vis Res 35:1175–1194

    CAS  PubMed  Google Scholar 

  7. Alm A, Nilsson F (2009) Uveoscleral outflow: a review. Exp Eye Res 88:760–768

    CAS  PubMed  Google Scholar 

  8. Regatieri C, Branchini L, Fujimoto J, Duker J (2012) Choroidal imaging using spectral domain optical coherence tomography. Retina 32(5):865–876

    PubMed Central  PubMed  Google Scholar 

  9. Spaide R, Koizumi H, Pozzoni M (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500

    PubMed  Google Scholar 

  10. Mrejen S, Spaide R (2013) Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol 58(5):387–429

    PubMed  Google Scholar 

  11. Rahman W, Chen F, Yeoh J, Patel P, Tufail A, Da Cruz L (2011) Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci 52(5):2267–2271

    PubMed  Google Scholar 

  12. Chhablani J, Barteselli G, Wang H, El-Emam S, Kozak I, Doede AL, Bartsch DU, Cheng L, Freeman WR (2012) Repeatability and reproducibility of manual choroidal volume measurements using enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci 53:2274–2280

    PubMed Central  PubMed  Google Scholar 

  13. Karaca EE, Ozdek S, Yalçin NG, Ekici F (2013) Reproducibility of choroidal thickness measurements in healthy Turkish subjects. Eur J Ophthalmol. doi:10.5301/ejo.5000351

    PubMed  Google Scholar 

  14. Shao L, Xu L, Chen C, Yang LH, Du KF, Wang S, Zhou JQ, Wang YX, You QS, Jonas JB, Wei WB (2013) Reproducibility of subfoveal choroidal thickness measurements with enhanced depth imaging by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 54(1):230–233

    PubMed  Google Scholar 

  15. Lin P, Mettu P, Pomerleau D, Chiu SJ, Maldonado R, Stinnett S, Toth CA, Farsiu S, Mruthyunjaya P (2012) Image inversion spectral-domain optical coherence tomography optimizes choroidal thickness and detail through improved contrast. Invest Ophthalmol Vis Sci 53:1874–1882

    PubMed  Google Scholar 

  16. Branchini L, Regatieri C, Flores-Moreno I, Baumann B, Fujimoto J, Duker J (2012) Reproducibility of choroidal thickness measurements across three spectral domain optical coherence tomography systems. Ophthalmology 119:119–123

    PubMed Central  PubMed  Google Scholar 

  17. Yamashita T, Yamashita T, Shirasawa M, Arimura N, Terasaki H, Sakamoto T (2012) Repeatability and reproducibility of subfoveal choroidal thickness in normal eyes of Japanese using different SD-OCT devices. Invest Ophthalmol Vis Sci 53(3):1102–1107

    PubMed  Google Scholar 

  18. Ramrattan R, van der Schaft T, Mooy C, de Bruijn W, Mulder P, de Jong P (1994) Morphometric analysis of Bruch’s membrane, the choriocapillaris and the choroid in aging. Investig Ophthalmol Vis Sci 35:2857–2864

    CAS  Google Scholar 

  19. Margolis R, Spaide R (2012) A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol 147:811–815

    Google Scholar 

  20. Wei W, Xu L, Jonas J, Shao L, Du KF, Wang S, Chen CX, Xu J, Wang YX, Zhou JQ, You QS (2012) Subfoveal choroidal thickness: the Beijing eye study. Ophthalmology 120(1):175–180

    PubMed  Google Scholar 

  21. Li X, Larsen M, Munch I (2011) Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students. Invest Ophthalmol Vis Sci 52(11):8438–8441

    PubMed  Google Scholar 

  22. Tan C, Ouyang Y, Ruiz H, Sadda S (2012) Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence.tomography. Invest Ophthalmol Vis Sci 53(1):261–266

    PubMed  Google Scholar 

  23. Lee SW, Yu SY, Seo KH, Kim ES, Kwak HW (2014) Diurnal variation in choroidal thickness in relation to sex, axial length and baseline choroidal thickness in healthy Korean subjects. Retina 34(2):385–393

    PubMed  Google Scholar 

  24. Yin Z, Vaegan M, Beaumont P, Sarks S (1997) Widespread choroidal insufficiency in primary open-angle glaucoma. J Glaucoma 6:23–32

    CAS  PubMed  Google Scholar 

  25. Sogawa K, Nagaoka T, Takahashi A, Tanano I, Tani T, Ishibazawa A, Yoshida A (2012) Relationship between choroidal thickness and choroidal circulation in healthy young subjects. Am J Ophthalmol 153:1129–1132

    PubMed  Google Scholar 

  26. Grossniklaus HE, Green WR (1992) Pathologic findings in pathologic myopia. Retina 12:127–133

    CAS  PubMed  Google Scholar 

  27. Okabe S, Matsuo N, Okamoto S, Kataoka H (1982) Electron microscopic studies on retinochoroidal atrophy in the human eye. Acta Med Okayama 36:11–21

    CAS  PubMed  Google Scholar 

  28. Moriyama M, Ohno-Matsui K, Futagami S, Yoshida T, Hayashi K, Shimada N, Kojima A, Tokoro T, Mochizuki M (2007) Morphology and long-term changes of choroidal vascular structure in highly myopic eyes with and without posterior staphyloma. Ophthalmology 114:1755–1762

    PubMed  Google Scholar 

  29. Akyol N, Kükner A, Ozdemir T, Esmerligil S (1996) Choroidal and retinal flow changes in degenerative myopia. Can J Ophthalmol 31:113–119

    CAS  PubMed  Google Scholar 

  30. To’mey K, Faris B, Jalkh A, Nasr A (1981) Ocular pulse in high myopia: a study of 40 eyes. Ann Ophthalmol 13:569–571

    PubMed  Google Scholar 

  31. Linsenmeier R, Padnick-Silver L (2000) Metabolic dependence of photoreceptors on the choroid in the normal and detached retina. Invest Ophthalmol Vis Sci 41:3117–3123

    CAS  PubMed  Google Scholar 

  32. Fujiwara T, Imamura Y, Margolis R, Slakter J, Spaide R (2009) Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol 148(3):445–450

    PubMed  Google Scholar 

  33. Flores-Moreno I, Lugo F, Duker J, Ruiz-Moreno J (2012) The relationship between axial length and choroidal thickness in eyes with high myopia. Am J Ophthalmol 155(2):314–319

    PubMed  Google Scholar 

  34. Yamagishi T, Koizumi H, Yamazaki T, Kinoshita S (2012) Choroidal thickness in inferior staphyloma associated with posterior serous retinal detachment. Retina 32(7):1237–1242

    PubMed  Google Scholar 

  35. Grunwald J, Hariprasad S, DuPont J (1998) Foveolar choroidal blood flow in age-related macular degeneration. Invest Ophthalmol Vis Sci 39(2):385–390

    CAS  PubMed  Google Scholar 

  36. Grossniklaus H, Green W (2004) Choroidal neovascularization. Am J Ophthalmol 137(3):496–503

    PubMed  Google Scholar 

  37. Friedman E (1997) A hemodynamic model of the pathogenesis of age-related macular degeneration. Am J Ophthalmol 124(5):677–682

    CAS  PubMed  Google Scholar 

  38. Klein R, Davis M, Magli Y, Segal P, Klein BE, Hubbard L (1991) The Wisconsin age-related maculopathy grading system. Ophthalmology 98:1128–1134

    CAS  PubMed  Google Scholar 

  39. Sadda S (2011) ‘Under the C-Scan’: Value of Choroidal Imaging in AMD Management. American Academy of Ophthalmology. Orlando. Video Presentations

  40. Zhang L, Lee K, Niemeijer M, Mullins R, Sonka M, Abramoff M (2012) Automated segmentation of the choroid from clinical SD-OCT. Invest Ophthalmol Vis Sci 53:7510–7519

    PubMed Central  PubMed  Google Scholar 

  41. Spaide R (2009) Age-related choroidal atrophy. Am J Ophthalmol 147(5):801–810

    PubMed  Google Scholar 

  42. Switzer D, Mendonça L, Saito M, Zweifel S, Spaide R (2012) Segregation of ophthalmoscopic characteristics according to choroidal thickness in patients with early age-related macular degeneration. Retina 32(7):1265–1271

    PubMed  Google Scholar 

  43. Spraul CW, Lang GE, Grossniklaus HE (1996) Morphometric analysis of the choroid, Bruch’s membrane, and retinal pigment epithelium in eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci 37(13):2724–2735

    CAS  PubMed  Google Scholar 

  44. Sigler EJ, Randolph JC (2013) Comparison of macular choroidal thickness among patients older than age 65 with early atrophic age-related macular degeneration and normal. Invest Ophthalmol Vis Sci 54(9):6307–6313

    PubMed  Google Scholar 

  45. Lee JY, Lee DH, Lee JY, Yoon YH (2013) Correlation between subfoveal choroidal thickness and the severity or progression of nonexudative age-related macular degeneration. Invest Ophthalmol Vis Sci. doi:10.1167/iovs. 13-12284

    Google Scholar 

  46. Jonas JB, Forster TM, Steinmetz P, Schlichtenbrede FC, Harder BC (2013) Choroidal thickness in age-related macular degeneration. Retina. [Epub ahead of print]

  47. McLeod DS, Grebe R, Bhutto I, Merges C, Baba T, Lutty GA (2009) Relationship between RPE and choriocapillaris in age-related macular degeneration. Invest Ophthalmol Vis Sci 50(10):4982–4991

    PubMed  Google Scholar 

  48. Bhutto I, Lutty G. (2012) Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol. Aspects Med.Mol Aspects Med 21;33(4):295–317

  49. Sigler E, Randolph J, Calzada J, Charles S (2014) Smoking and choroidal thickness in patients over 65 with early-atrophic age-related macular degeneration and normal. Eye 28:838–846

    CAS  PubMed  Google Scholar 

  50. Sizmaz S, Küçükerdönmez C, Pinarci EY, Karalezli A, Canan H, Yilmaz G (2013) The effect of smoking on choroidal thickness measured by optical coherence tomography. Br J Ophthalmol 97(5):601–604

    PubMed  Google Scholar 

  51. Jirarattanasopa P, Ooto S, Nakata I, Tsujikawa A, Yamashiro K, Oishi A, Yoshimura N (2012) Choroidal thickness, vascular hyperpermeability, and complement factor H in age-related macular degeneration and polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci 53(7):3663–3672

    CAS  PubMed  Google Scholar 

  52. Koizumi H, Yamagishi T, Yamazaki T, Kawasaki R, Kinoshita S (2011) Subfoveal choroidal thickness in typical age-related macular degeneration and polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol 249(8):1123–1128

    PubMed  Google Scholar 

  53. Chung SE, Kang SW, Lee JH, Kim YT (2011) Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology 118(5):840–845

    PubMed  Google Scholar 

  54. Yang L, Jonas J, Wei W (2013) Optical coherence tomography enhanced depth imaging of polypoidal choroidal vasculopathy. Retina 33:1584–1589

    PubMed  Google Scholar 

  55. Kim JH, Kang SW, Kim JR, Kim SJ (2013) Variability of subfoveal choroidal thickness measurements in patients with age-related macular degeneration and central serous chorioretinopathy. Eye (London) 27(7):809–815

    CAS  Google Scholar 

  56. Imamura Y, Fujiwara T, Margolis R, Spaide R (2012) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29(10):1469–1473

    Google Scholar 

  57. Coscas F, Puche N, Coscas G, Srour M, Francais C, Glacet-Bernard A, Querques G, Souied E (2014) Comparison of macular choroidal thickness in adult onset foveomacular vitelliform dystrophy and age-related macular degeneration. Invest Ophthalmol Vis Sci 55:64–69

    PubMed  Google Scholar 

  58. Rahman W, Chen FK, Yeoh J, da Cruz L (2013) Enhanced depth imaging of the choroid in patients with neovascular age-related macular degeneration treated with anti-VEGF therapy versus untreated patients. Graefes Arch Clin Exp Ophthalmol 251(6):1483–1488

    CAS  PubMed  Google Scholar 

  59. Yamazaki T, Koizumi H, Yamagishi T, Kinoshita S (2012) Subfoveal choroidal thickness after ranibizumab therapy for neovascular age-related macular degeneration: 12-month results. Ophthalmology 119(8):1621–1627

    PubMed  Google Scholar 

  60. Kang HM, Kwon HJ, Yi JH, Lee CS, Lee SC (2014) Subfoveal choroidal thickness as a potential predictor of visual outcome and treatment response after intravitreal ranibizumab injections for typical exudative age-related macular degeneration. Am J Ophthalmol 157(5):1013–1021

    PubMed  Google Scholar 

  61. Ellabban A, Tsujikawa A, Ogino K, Ooto S, Yamashiro K, Oishi A, Yoshimura N (2012) Choroidal thickness after intravitreal ranibizumab injections for choroidal neovascularization. Clin Ophthalmol 6:837–844

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Hamard P, Hamard H, Dufaux J, Quesnot S (1994) Optic nerve head blood flow using a laser doppler velocimeter and haemorheology in primary open angle glaucoma and normal pressure glaucoma. Br J Ophthalmol 78:449–453

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Hayreh S (1969) Blood supply of the optic nerve head and its role in optic atrophy, glaucoma, and oedema of the optic disc. Br J Ophthalmol 53:721–748

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Hayreh S (1970) Pathogenesis of visual field defects. Role of the ciliary circulation. Br J Ophthalmol 54:289–311

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Drance S, Sweeney V, Morgan R, Feldman F (1973) Studies of factors involved in the production of low tension glaucoma. Arch Ophthalmol 89:457–465

    CAS  PubMed  Google Scholar 

  66. Kubota T, Jonas J, Naumann O (1993) Decreased choroidal thickness in eyes with secondary angle closure glaucoma. An aetiological factor for deep retinal changes in glaucoma? Br J Ophthalmol 77:430–432

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Haefliger I, Flammer J, Luscher T (1993) Heterogeneity of endothelium-dependent regulation in ophthalmic and ciliary arteries. Invest Ophthalmol Vis Sci 34:1722–1730

    CAS  PubMed  Google Scholar 

  68. Mackenzie P (2008) Vascular anatomy of the optic nerve. Can J Ophthmol 43(3):308–312

    Google Scholar 

  69. Hayreh S (2001) The blood supply of the optic nerve head and the evaluation of it-myth and reality. Prog Retin Eye Res 20(5):563–593

    CAS  PubMed  Google Scholar 

  70. Leske M, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z (2007) EMGT Group. Predictors of long-term progression in the Early Manifest Glaucoma Trial. Ophthalmology 114:1965–1972

    PubMed  Google Scholar 

  71. Mwanza J, Sayyad F, Budenz D (2012) Choroidal thickness in unilateral advanced glaucoma. Invest Ophthalmol Vis Sci 53(10):6695–6701

    PubMed  Google Scholar 

  72. Mwanza J, Hochberg J, Banitt M, Feuer W, Budenz D (2011) Lack of association between glaucoma and macular choroidal thickness measured with enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci 52(6):3430–3435

    PubMed Central  PubMed  Google Scholar 

  73. Maul E, Friedman D, Chang D, Boland MV, Ramulu PY, Jampel HD, Quigley HA (2011) Choroidal thickness measured by spectral domain optical coherence tomography: factors affecting thickness in glaucoma patients. Ophthalmology 118:1571–1579

    PubMed Central  PubMed  Google Scholar 

  74. Hirooka K, Fujiwara A, Shiragami T, Baba T, Shiraga F (2012) Relationship between progression of visual field damage and choroidal thickness in eyes with normal-tension glaucoma. Clin Exp Ophthalmol 40(6):576–582

    Google Scholar 

  75. Hirooka K, Tenkumo K, Fujiwara A, Baba T, Sato S, Shiraga F (2012) Evaluation of peripapillary choroidal thickness in patients with normal-tension Glaucoma. BMC Ophthalmol. doi:10.1186/ 1471-2415-12-29

    PubMed Central  PubMed  Google Scholar 

  76. Huang W, Wang W, Gao X, Li X, Li Z, Zhou M, Chen S, Zhang X (2013) Choroidal thickness in the subtypes of angle closure: an EDI-OCT study. Invest Ophthalmol Vis Sci 54(13):7849–7853

    PubMed  Google Scholar 

  77. Zhou M, Wang W, Ding X, Huang W, Chen S, Laties AM, Zhang X (2013) Choroidal thickness in fellow eyes of patients with acute primary angle-closure measured by enhanced depth imaging spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 54(3):1971–1978

    PubMed  Google Scholar 

  78. Rhew J, Kim Y, Choi K (2012) Measurement of subfoveal choroidal thickness in normal-tension glaucoma in Korean patients. J Glaucoma 23(1):46–49

    Google Scholar 

  79. Fénolland J, Giraud J, Maÿ F, Mouinga A, Seck S, Renard J (2011) Enhanced depth imaging of the choroid in open-angle glaucoma: a preliminary study. J Fr Ophtalmol 34(5):313–317

    PubMed  Google Scholar 

  80. Silvestre J, Lévy B (2006) Molecular basis of angiopathy in diabetes mellitus. Circ Res 98:4–6

    CAS  PubMed  Google Scholar 

  81. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845

    CAS  PubMed  Google Scholar 

  82. Harris A, Gingaman P, Ciulla A, Martin B (2001) Retinal and choroidal blood flow in health and disease. In: Ryan SJ (ed) The retina, 3rd edn. Mosby, St Louis, pp 68–88

    Google Scholar 

  83. Langham ME, Farrell RA, O’Brien V, Silver DM, Schilder P (1998) Blood flow in the human eye. Acta Ophthalmol 191:9–13

    Google Scholar 

  84. Savage H, Hendrix J, Peterson D, Young H, Wilkinson C (2004) Differences in pulsatile ocular blood flow among three classifications of diabetic retinopathy. Invest Ophthalmol Vis Sci 45(12):4504–4509

    PubMed  Google Scholar 

  85. MacKinnon J, O’Brien C, Swa K, Aspinall P, Butt Z, Cameron D (1997) Pulsatile ocular blood flow in untreated diabetic retinopathy. Acta Ophthalmol Scand 75:661–664

    CAS  PubMed  Google Scholar 

  86. Geyer O, Neudorfer M, Snir T, Goldstein M, Rock T, Silver DM, Bartov E (1999) Pulsatile ocular blood flow in diabetic retinopathy. Acta Ophthalmol Scand 77:522–525

    CAS  PubMed  Google Scholar 

  87. Langham ME, Grebe R, Hopkins S, Marcus S, Sebag M (1991) Choroidal blood flow in diabetic retinopathy. Exp Eye Res 52(2):167–173

    CAS  PubMed  Google Scholar 

  88. Nagaoka T, Kitaya N, Sugawara R, Yokota H, Mori F, Hikichi T, Fujio N, Yoshida A (2004) Alteration of choroidal circulation in the foveal region in patients with type 2 diabetes. Br J Ophthalmol 88(8):1060–1063

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Schocket L, Brucker A, Niknam R, Grunwald J, DuPont J, Brucker A (2004) Foveolar choroidal hemodynamics in proliferative diabetic retinopathy. Int Ophthalmol 25(2):89–94

    PubMed  Google Scholar 

  90. Regatieri C, Branchini L, Carmody J, Fujimoto J, Duker J (2012) Choroidal thickness in patients with diabetic retinopathy analysed by spectral-domain optical coherence tomography. Retina 32(3):563–568

    PubMed Central  PubMed  Google Scholar 

  91. Vujosevic S, Martini F, Cavarzeran F, Pilotto E, Midena E (2012) Macular and peripapillary choroidal thickness in diabetic patients. Retina 32(9):1781–1790

    PubMed  Google Scholar 

  92. Esmaeelpour M, Považay B, Hermann B, Hofer B, Kajic V, Hale SL, North RV, Drexler W, Sheen NJ (2011) Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm Optical coherence tomography. Invest Ophthalmol Vis Sci 52:5311–5316

    PubMed  Google Scholar 

  93. Querques G, Lattanzio R, Querques L, Del Turco C, Forte R, Pierro L, Souied EH, Bandello F (2012) Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Ophthalmol Vis Sci 53:6017–6024

    PubMed  Google Scholar 

  94. Lee Kyung H, Won Lim J, Cheol Shin M (2013) Comparison of choroidal thickness in patients with diabetes by spectral-domain optical coherence tomography. Korean J Ophthalmol 27(6):433–439

    Google Scholar 

  95. Kim J, Lee D, Joe S, Kim J, Yoon Y (2013) Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Invest Ophthalmol Vis Sci 54(5):3378–3384

    PubMed  Google Scholar 

  96. Xu J, Xu L, Du KF, Shao L, Chen CX, Zhou JQ, Wang YX, You QS, Jonas JB, Wei WB (2013) Subfoveal choroidal thickness in diabetes and diabetic retinopathy. Ophthalmology 120(10):2023–2028

    PubMed  Google Scholar 

  97. Yülek F, Uğurlu N, Onal ED, Kocamış SI, Cağıl N, Ersoy R, Cakır B (2013) Choroidal changes and duration of diabetes. Semin Ophthalmol 29(2):80–84

    PubMed  Google Scholar 

  98. Stefansson E, Machemer R, de Juan E Jr, McCuen BW 2nd, Peterson J (1992) Retinal oxygenation and laser treatment in patients with diabetic retinopathy. Am J Ophthalmol 113:36–38

    CAS  PubMed  Google Scholar 

  99. Stefansson E, Landers MB III, Wolbarsht ML (1981) Increased retinal oxygen supply following pan-retinal photocoagulation and vitrectomy and lensectomy. Trans Am Ophthalmol Soc 79:307–334

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Sandhu R, Sivaprasad S, Chong V (2005) Pulsatile ocular blood flow changes after pan–retinal photocoagulation and macular laser for diabetic retinopathy – results at 9 months follow–up. Invest Ophthalmol Vis Sci 46: E-Abstract 385

  101. Lee C, Smith J, Kang-Mieler J, Budzynski E, Linsenmeier R (2011) Decreased circulation in the feline choriocapillaris underlying retinal photocoagulation lesions. Invest Ophthalmol Vis Sci 52(6):3398–3403

    PubMed Central  PubMed  Google Scholar 

  102. Stitt A, Gardiner T, Archer D (1995) Retinal and choroidal responses to panretinal photocoagulation: an ultrastructural perspective. Graefes Arch Clin Exp Ophthalmol 233(11):699–705

    CAS  PubMed  Google Scholar 

  103. Takahashi A, Nagaoka T, Sato E, Yoshida A (2008) Effect of panretinal photocoagulation on choroidal circulation in the foveal region in patients with severe diabetic retinopathy. Br J Ophthalmol 92:1369–1373

    CAS  PubMed  Google Scholar 

  104. Cho G, Cho H, Kim Y (2013) Change in subfoveal choroidal thickness after argon laser panretinal photocoagulation. Int J Ophthalmol 6(4):505–509

    PubMed Central  PubMed  Google Scholar 

  105. Rao NA (2007) Pathology of Vogt–Koyanagi–Harada disease. Int Ophthalmol 27:81–85

    PubMed  Google Scholar 

  106. Fong AH, Li KK, Wong D (2011) Choroidal evaluation using enhanced depth imaging spectral-domain optical coherence tomography in Vogt-Koyanagi-Harada disease. Retina 31(3):502–509

    PubMed  Google Scholar 

  107. Takahashi H, Takase H, Ishizuka A, Miyanaga M, Kawaguchi T, Ohno-Matsui K, Mochizuki M (2013) Choroidal thickness in convalescent Vogt-Koyanagi-Harada Disease. Retina 34(4):775–780

    Google Scholar 

  108. da Silva FT, Sakata VM, Nakashima A, Hirata CE, Olivalves E, Takahashi WY, Costa RA, Yamamoto JH (2013) Enhanced depth imaging optical coherence tomography in long-standing Vogt-Koyanagi-Harada disease. Br J Ophthalmol 97(1):70–74

    PubMed  Google Scholar 

  109. Nakayama M, Keino H, Okada AA, Watanabe T, Taki W, Inoue M, Hirakata A (2012) Enhanced depth imaging optical coherence tomography of the choroid in Vogt-Koyanagi-Harada disease. Retina 32(10):2061–2069

    PubMed  Google Scholar 

  110. Maruko I, Iida T, Sugano Y, Oyamada H, Sekiryu T, Fujiwara T, Spaide RF (2011) Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease. Retina 31(3):510–517

    PubMed  Google Scholar 

  111. Matsuo T, Sato Y, Shiraga F, Shiragami C, Tsuchida Y (1999) Choroidal abnormalities in Behçet disease observed by simultaneous indocyanine green and fluorescein angiography with scanning laser ophthalmoscopy. Ophthalmology 106(2):295–300

    CAS  PubMed  Google Scholar 

  112. Atmaca LS, Sonmez PA (2003) Fluorescein and indocyanine green angiography findings in Behçet’s disease. Br J Ophthalmol 87(12):1466–1468

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Kim M, Kim H, Kwon HJ, Kim SS, Koh HJ, Lee SC (2013) Choroidal thickness in Behcet’s uveitis: an enhanced depth imaging-optical coherence tomography and its association with angiographic changes. Invest Ophthalmol Vis Sci 54(9):6033–6039

    PubMed  Google Scholar 

  114. Coskun E, Gurler B, Pehlivan Y, Kisacik B, Okumus S, Yayuspayı R, Ozcan E, Onat AM (2013) Enhanced depth imaging optical coherence tomography findings in behçet disease. Ocul Immunol Inflamm 21(6):440–445

    PubMed  Google Scholar 

  115. Shah SU, Kaliki S, Shields CL, Ferenczy SR, Harmon SA, Shields JA (2012) Enhanced depth imaging optical coherence tomography of choroidal nevus in 104 cases. Ophthalmology 119(5):1066–1072

    PubMed  Google Scholar 

  116. Shields C, Kaliki S, Rojanaporn D, Ferenczy S, Shields J (2012) Enhanced depth imaging optical coherence tomography of small choroidal melanoma comparison with choroidal nevus. Arch Ophthalmol 130(7):850–856

    PubMed  Google Scholar 

  117. Torres VL, Brugnoni N, Kaiser PK, Singh AD (2011) Optical coherence tomography enhanced depth imaging of choroidal tumors. Am J Ophthalmol 151(4):586–593

    PubMed  Google Scholar 

  118. Aras C, Ocakoglu O, Akova N (2004) Foveolar choroidal blood flow in idiopathic macular hole. Int Ophthalmol 25(4):225–231

    PubMed  Google Scholar 

  119. Schaal K, Pollithy S, Dithmar S (2012) Is choroidal thickness of importance in idiopathic macular hole? Ophthalmologe 109(4):364–368

    CAS  PubMed  Google Scholar 

  120. Reibaldi M, Boscia F, Avitabile T, Uva MG, Russo V, Zagari M, Bonfiglio V, Reibaldi A, Longo A (2011) Enhanced depth imaging optical coherence tomography of the choroid in idiopathic macular hole: a cross-sectional prospective study. Am J Ophthalmol 151(1):112–117

    PubMed  Google Scholar 

  121. Zeng J, Li J, Liu R et al (2012) Choroidal thickness in both eyes of patients with unilateral idiopathic macular hole. Ophthalmology 119(11):2328–2333

    PubMed  Google Scholar 

  122. Jirarattanasopa P, Ooto S, Tsujikawa A, Yamashiro K, Hangai M, Hirata M, Matsumoto A, Yoshimura N (2012) Assessment of macular choroidal thickness by optical coherence tomography and angiographic changes in central serous chorioretinopathy. Ophthalmology 119(8):1666–1678

    PubMed  Google Scholar 

  123. Spaide R, Campeas L, Haas A, Yannuzzi LA, Fisher YL, Guyer DR, Slakter JS, Sorenson JA, Orlock DA (1996) Central serous chorioretinopathy in younger and older adults. Ophthalmology 103(12):2070–2079

    CAS  PubMed  Google Scholar 

  124. Kim Y, Kang S, Bai K (2011) Choroidal thickness in both eyes of patients with unilaterally active central serous chorioretinopathy. Eye 25(12):1635–1640

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Maruko I, Lida T, Sugano Y, Furuta M, Sekiryu T (2011) One-year choroidal thickness results after photodynamic therapy for central serous chorioretinopathy. Retina 31(9):1921–1927

    PubMed  Google Scholar 

  126. Maruko I, Lida T, Sugano Y, Ojima A, Ogasawara M, Spaide R (2010) Subfoveal choroidal thickness after treatment of central serous chorioretinopathy. Ophthalmology 117(9):1792–1799

    PubMed  Google Scholar 

  127. Grunwald J, Maguire A, Dupont J (1996) Retinal hemodynamics in retinitis pigmentosa. Am J Ophthalmol 122:502–508

    CAS  PubMed  Google Scholar 

  128. Schmidt K, Pillunat L, Kohler K, Flammer J (2001) Ocular pulse amplitude is reduced in patients with advanced retinitis pigmentosa. Br J Ophthalmol 85:678–682

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Langham M, Kramer T (1990) Decreased choroidal blood flow associated with retinitis pigmentosa. Eye (London) 4:374–381

    Google Scholar 

  130. Falsini B, Anselmi GM, Marangoni D, D’Esposito F, Fadda A, Di Renzo A, Campos EC, Riva CE (2011) Subfoveal choroidal blood flow and central retinal function in retinitis pigmentosa. Invest Ophthalmol Vis Sci 52:1064–1069

    PubMed  Google Scholar 

  131. Silver DA, Farrell RA, Langham ME, O’Brien V, Schilder P (1989) Estimation of pulsatile ocular blood flow from intraocular pressure. Acta Ophthalmol (Supplement) 191: 67: 25–29

  132. Dhoot D, Huo S, Yuan A, Xu D, Srivistava S, Ehlers JP, Traboulsi E, Kaiser PK (2012) Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography. Br J Ophthalmol 97(1):66–69

    PubMed  Google Scholar 

  133. Ayton L, Guymer R (2012) Choroidal thickness profiles in retinitis pigmentosa clinical and experimental. Ophthalmology 41(4):396–403

    Google Scholar 

Download references

Acknowledgments

Contributions to authors in each of these areas: Design and conduct of the study (HL, HZ); Collection, management, analysis, and interpretation of the data (HL, HZ); Preparation, review, and approval of manuscript (HL, HZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Laviers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laviers, H., Zambarakji, H. Enhanced depth imaging-OCT of the choroid: a review of the current literature. Graefes Arch Clin Exp Ophthalmol 252, 1871–1883 (2014). https://doi.org/10.1007/s00417-014-2840-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2840-y

Keywords

Navigation