Skip to main content

Advertisement

Log in

Accommodating intraocular lenses: a critical review of present and future concepts

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Significant efforts have been made to develop lens implants or refilling procedures that restore accommodation. Even with monofocal implants, apparent or pseudoaccommodation may provide the patient with substantial though varying spectacle independence. True pseudophakic accommodation with a change of overall refractive power of the eye may be induced either by an anterior shift or a change in curvature of the lens optic.

Materials and methods

Passive-shift lenses were designed to move forward under ciliary muscle contraction. This is the only accommodative lens type currently marketed (43E/S by Morcher; 1CU by HumanOptics; AT-45 by Eyeonics). The working principle relies on various hypothetical assumptions regarding the mechanism of natural accommodation. Dual-optic lenses were designed to increase the dioptric impact of optic shift. They consist of a mobile front optic and a stationary rear optic which are interconnected with spring-type haptics. With active-shift lens systems the driving force is provided by repulsing mini-magnets. Lens refilling procedures replace the lens content by an elastic material and provide accommodation by an increase of surface curvature.

Results

Findings with passive-shift lenses have been contradictory. While uncorrected reading vision results were initially reported to be favorable with the 1CU, and excellent with the AT-45 lens, distant-corrected near vision did not exceed that with standard monofocal lenses in later studies. Mean axial shift from laser interferometric measurements under stimulation with pilocarpine showed a moderate anterior shift with the 1CU, while the AT-45 paradoxically exhibited a small posterior shift. With the 1CU, the shift-induced accommodative effect was calculated to be less than +0.5 D in most cases, while +1 D was achieved in a single case only. Ranges and standard deviations were very large in relation to the mean values. Under physiological near-point stimulation, however, no shift was seen at all. Prevention of capsule fibrosis by extensive capsule polishing did not enhance the functional performance. Dual optic lenses are under clinical investigation and are reported to provide a significant amount of accommodation. However, possible long-term formation of interlenticular opacifications remains to be excluded. Regarding magnet-driven active-shift lens systems, initial clinical experience has been promising. Prevention of fibrotic capsular contraction is crucial, and it has been effectively counteracted with a special capsular tension ring, or lens fixation technique, together with capsule polishing. Lens refilling has been extensively studied in the laboratory and in primates. Though it offers great potential for fully restoring accommodation, a variety of problems must be solved, such as achieving emmetropia in the relaxed state, adequate response to ciliary muscle contraction, satisfying image quality over the entire range of accommodation and sustained functioning. The key problem, however, is again after-cataract prevention.

Conclusions

As opposed to psychophysical evaluation techniques, laser interferometry measures what shift lenses are designed to provide: axial shift on accommodative effort. While under pilocarpine some movement was recorded, no movement at all was found under near-point stimulation with any of the lenses currently marketed. In contrast, magnetic-driven active-shift lens systems carry the potential of sufficiently topping up apparent accommodation to provide for clinically useful accommodation while using conventional lens designs with proven after-cataract performance. Dual optic implants significantly increase the impact of axial optic shift. The main potential problem, however, is delayed formation of interlenticular regenerates. Lens refilling procedures offer the potential of fully restoring accommodation due to the great impact of increase in surface curvature on refractive lens power. However, various problems remain to be solved before clinical use can be envisaged, above all, again, after-cataract prevention. The concept of passive single-optic shift lenses has failed. Concomitant poor capsular bag performance makes these lenses an unacceptable trade-off. Magnet-assisted systems potentially combine clinically useful accommodation with satisfactory after-cataract performance. Dual optic lenses theoretically offer substantial accommodative potential but may allow for interlenticular after-cataract formation. Lens refilling procedures have the greatest potential for fully restoring natural accommodation, but will again require years of extensive laboratory and animal investigations before they may function in the human eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Auffarth GU, Martin M, Fuchs HA, Rabsiber TM, Becker KA, Schmack I (2002) Validity of anterior chamber depth measurements for the evaluation of accommodation after implantation of an accommodative HumanOptics 1CU intraocular lens. Ophthalmologe 99:815–819

    Article  PubMed  CAS  Google Scholar 

  2. Coleman DJ (1986) On the hydraulic suspension theory of accommodation. Trans Am Ophthalmol Soc 84:846–868

    PubMed  CAS  Google Scholar 

  3. Coleman DJ, Fish SK (2001) Presbyopia, accommodation, and the mature catenary. Ophthalmology 108:1544–1551

    Article  PubMed  CAS  Google Scholar 

  4. Croft MA, Glasser A, Kaufman PL (2001) Accommodation and presbyopia. Int Ophthalmol Clin 41:33–46

    Article  PubMed  CAS  Google Scholar 

  5. Cumming JS, Slade SG, Chayet A (2001) Clinical evaluation of the model AT-45 silicone accommodative intraocular lens: results of feasibility and the initial phase of a food and drug administration clinical trial. Ophthalmology 108:2005–2008

    Article  PubMed  CAS  Google Scholar 

  6. De Groot JH, van Beijma FJ, Haitjema HJ, Dillingham KA, Hodd KA, Koopmans SA, Norrby S (2001) Injectable intraocular lens materials based upon hydrogels. Biomacromolecules 2:628–634

    Article  PubMed  Google Scholar 

  7. Elder MJ, Murphy C, Sanderson GF (1996) Apparent accommodation and depth of field in pseudophakia. J Cataract Refract Surg 22:615–619

    PubMed  CAS  Google Scholar 

  8. Fercher AF, Roth E (1986) Ophthalmic laser interferometer. Proc SPIE 658:48–51

    Google Scholar 

  9. Findl O, Drexler W, Menapace R, Hitzenberger CK, Fercher AF (1998) High precision biometry of pseudophakic eye using partial coherence laser interferometry. J Cataract Refract Surg 24:1087–1093

    PubMed  CAS  Google Scholar 

  10. Findl O, Menapace R (2000) Piggyback intraocular lenses. J Cataract Refract Surg 26:308–309

    Article  PubMed  CAS  Google Scholar 

  11. Findl O, Kiss B, Petternel V, Menapace R, Georgopoulos M, Rainer G, Drexler W (2003) Intraocular lens movement caused by ciliary muscle contraction. J Cataract Refract Surg 29:669–676

    Article  PubMed  Google Scholar 

  12. Findl O, Kriechbaum K, Menapace R, Koeppl C, Sacu S, Wirtitsch M, Buehl W, Drexler W (2004) Laserinterferometric assessment of pilocarpine-induced movement of an accommodating intraocular lens: a randomized trial. Ophthalmology 111:1515–1521

    Article  PubMed  Google Scholar 

  13. Fukuyama M, Oshika T, Amano S, Yoshitomi F (1999) Relationsship between apparent accommodation and corneal multifocality in pseudophakic eyes. Ophthalmology 106:1178–1181

    Article  PubMed  CAS  Google Scholar 

  14. Glasser A, Campbell MC (1999) Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vision Res 39:1991–2015

    Article  PubMed  CAS  Google Scholar 

  15. Greenbaum S (2002) Monovision pseudophakia. J Cataract Refract Surg 28:1439–1443

    Article  PubMed  Google Scholar 

  16. Haefliger E, Parel JM, Fantes F, Norton EW, Anderson DR, Forster RK, Hernandez E, Feuer WJ (1987) Accommodation of an endocapsular silicone lens (Phaco-Ersatz) in the nonhuman primate. Ophthalmology 94:471–477

    PubMed  CAS  Google Scholar 

  17. Haefliger E, Parel JM (1994) Accommodation of an endocapsular silicone lens (Phaco-Ersatz) in the aging rhesus monkey. J Refract Corneal Surg 10:550–555

    PubMed  CAS  Google Scholar 

  18. Haigis W, Auffarth GU, Limberger IJ, Rabsilber TM, Reuland AJ (2005) [Precision measurements of accommodative shift of the 1CU-lens for assessment of resulting refractive changes.] Proceedings 19th Congress of the German-speaking Society of Intraocular Lens Implantation and Refractive Surgery, Magdeburg pp241–255

  19. Hara T, Yasuda A, Yamada Y (1990) Accommodative intraocular lens with spring action. 1. Design and placement in an excised animal model. Ophthalmic Surg 21:128–133

    PubMed  CAS  Google Scholar 

  20. Hara T, Yasuda A, Mizumoto Y, Yamada Y (1992) Accommodative intraocular lens with spring action. 2. Fixation in the living rabbit. Ophthalmic Surg 23:632–635

    PubMed  CAS  Google Scholar 

  21. Hara T, Sakka Y, Sakanishi K, Yamada Y, Nakamae K, Hayashi F (1994) Complications associated with endocapsular balloon implantation in rabbit eyes. J Cataract Refract Surg 20:507–512

    PubMed  CAS  Google Scholar 

  22. Hardman Lea SJ, Rubinstein MP, Snead MP, Haworth SM (1990) Pseudophakic accommodation? A study of the stability of capsular bag supported, one piece, rigid tripod, or soft flexible implants. Br J Ophthalmol 74:22–25

    PubMed  CAS  Google Scholar 

  23. Hayashi K, Hayashi H, Nakao F, Hayashi F (2003) Aging changes in apparent accommodation in eyes with a monofocal intraocular lens. Am J Ophthalmol 135:432–436

    Article  PubMed  Google Scholar 

  24. Hettlich HJ, Lucke K, Asiyo-Vogel MN, Schulte M, Vogel A (1994) Lens refilling and endocapsular polymerization of an injectable intraocular lens: in vitro and in vivo study of potential risks and benefits. J Cataract Refract Surg 20:115–123

    PubMed  CAS  Google Scholar 

  25. Hettlich HJ, Asiyo-Vogel M (1996) [Experimental experiences with balloon-shaped capsular sac implantation with reference to accommodation outcome in intraocular lenses] Ophthalmologe 93:73–75

    PubMed  CAS  Google Scholar 

  26. Holladay JT (1993) Refractive power calculations for intraocular lenses in the phakic eye. Am J Ophthalmol 116:63–66

    PubMed  CAS  Google Scholar 

  27. Horton JC, Jones MR (1997) Warning on inaccurate Rosenbaum charts for testing near vision. Surv Ophthalmol 42:169–174

    Article  PubMed  CAS  Google Scholar 

  28. Huber C (1981) Planned myopic astigmatism as a substitute for accommodation in pseudophakic eyes. Am Intraocular Implant Soc 3:244–249

    Google Scholar 

  29. Kessler J (1964) Experiments in refilling the lens. Arch Opthalmol 71:412–417

    CAS  Google Scholar 

  30. Kirchhoff A, Stachs O, Guthoff R (2001) Three-dimensional ultrasound findings of the posterior iris region. Graefes Arch Clin Exp Ophthalmol 239:968–971

    PubMed  CAS  Google Scholar 

  31. Koeppl C, Findl O, Menapace R, Kriechbaum K, Wirtitsch M, Buehl W, Sacu S, Drexler W (2005) Pilocarpine-induced shift of an accommodating intraocular lens: AT-45 Crystalens. J Cataract Refract Surg 31:1290–1297

    Article  PubMed  Google Scholar 

  32. Koopmans SA, Terwee T, Barkhof J, Haitjema HJ, Kooijman AC (2003) Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes. Invest Ophthalmol Vis Sci 44:250–257

    Article  PubMed  Google Scholar 

  33. Koopmans SA, Terwee T, Haitjema HJ, Barkhof J, Kooijman AC (2003) Effect of infusion bottle height on lens power after lens refilling with and without a plug. J Cataract Refract Surg 29:1989–1995

    Article  PubMed  Google Scholar 

  34. Koopmans SA, Terwee T, Haitjema HJ, Deuring H, Aarle S, Kooijman AC (2004) Relation between injected volume and optical parameters in refilled isolated porcine lenses. Ophthalmic Physiol Opt 24:572–579

    Article  PubMed  Google Scholar 

  35. Kriechbaum K, Findl O, Kiss B, Sacu S, Petternel V, Drexler W (2003) Comparison of anterior chamber depth measurement methods in phakic and pseudophakic eyes. J Cataract Refract Surg 29:89–94

    Article  PubMed  Google Scholar 

  36. Kriechbaum K, Findl O, Koeppl C, Menapace R, Drexler W (2005) Stimulus-driven versus pilocarpine-induced biometric changes in pseudophakic eyes. Ophthalmology 112:453–459

    Article  PubMed  CAS  Google Scholar 

  37. Kuechle M, Nguyen NX, Langenbucher A, Gusek-Schneider GC, Seitz B, Hanna KD (2002) Implantation of a new accommodative posterior chamber intraocular lens. J Refract Surg 18:208–216

    Google Scholar 

  38. Kuechle M, Seitz B, Langenbucher A, Martus P, Nguyen NX (2003) Erlangen Accommodative Intraocular Lens Study Group. Stability of refraction, accommodation, and lens position after implantation of the 1CU accommodating posterior chamber intraocular lens. J Cataract Refract Surg 29:2324–2329

    Article  Google Scholar 

  39. Kuechle M, Seitz B, Langenbucher A, Gusek-Schneider GC, Martus P, Nguyen NX (2004) The Erlangen Accommodative Intraocular Lens Study Group. Comparison of 6-month results of implantation of the 1CU accommodative intraocular lens with conventional intraocular lenses. Ophthalmology 111:318–324

    Article  Google Scholar 

  40. Langenbucher, Langenbucher A, Huber S, Nguyen NX, Seitz B, Gusek-Schneider GC, Kuechle M (2003) Measurement of accommodation after implantation of an accommodating intraocular lens. J Cataract Refract Surg 29:677–685

    Article  PubMed  Google Scholar 

  41. Legeais JM, Werner L, Abenhaim A, Renard G (1999) Pseudoaccommodation: BioComFold versus a foldable silicone intraocular lens. J Cataract Refract Surg 25:262–267

    Article  PubMed  CAS  Google Scholar 

  42. Lesiewska-Junk H, Kaluzny J (2002) Intraocular lens movement and accommodation in eyes of young patients. J Cataract Refract Surg 26:562–565

    Article  Google Scholar 

  43. Leyland M, Ziniola E (2003) Multifocal versus minifocal intraocular lenses in cataract surgery: a systematic review. Ophthalmology 110:1789–1798

    Article  PubMed  Google Scholar 

  44. Lucke K, Hettlich HJ, Kreiner CF (1992) A method of lens extraction for the injection of liquid intraocular lenses. Ger J Ophthalmol 1:342–345

    PubMed  CAS  Google Scholar 

  45. Maloof AJ. Selective targeting of lens epithelial cells during human cataract surgery using sealed-capsule irrigation with distilled water. ARVO 2004, Fort Lauderdale, Abstract B291

  46. Mastropasqua L, Toto L, Nubile M, Falconio G, Ballone E (2003) Clinical study of the 1CU accommodating intraocular lens. J Cataract Rferact Surg 29:1307–1312

    Article  Google Scholar 

  47. McDonald JP, Croft MA, Vinje E, Glasser A, Heatley GA, Kaufman P, Sarfarazi FM (2003) Sarfarazi elliptical accommodating intraocular lens (EAIOL) in rhesus monkey eyes in vitro and in vivo. Invest Ophthalmol Vis Sci;44: Abstract 256

  48. McLoed SD, Portney V, Ting A (2003) A dual optic accommodating foldable lens. Br J Ophthalmol 87:1083–1085

    Article  Google Scholar 

  49. Menapace R (2004) Prevention of after cataract. In: T Kohnen, DD Koch (eds) Cataract and refractive surgery, Series Essentials in Ophthalmology. pp 101–122

  50. Menapace R, Wirtitsch M, Findl O, Buehl W, Kriechbaum K, Sacu S (2005) Effect of anterior capsule-polishing on posterior capsular opacification and neodymium-YAG capsulotomy rate: a three-year randomized trial. J Cataract Refract Surg 31:2067–2075

    Article  PubMed  Google Scholar 

  51. Menapace R (2006) Primary posterior buttonholing for eradication of after-cataract: report of 500 cases. J Cataract Refract Surg 32:929–943

    Article  PubMed  Google Scholar 

  52. Menapace R (2006) “Aspiration Curette”: an instrument for efficient and safe anterior capsule polishing: laboratory and clinical results. J Cataract Refract Surg, in press

  53. Mester U, Dillinger P, Anterist N, Kaymak H (2005) Functional results with two multifocal intraocular lenses (MIOL). Array SA40 versus Acri.Twin] Ophthalmologe 102:1051–1056

    Article  PubMed  CAS  Google Scholar 

  54. Nakazawa M, Ohtsuki K (1983) Apparent accommodations in pseudophakic eyes after implantation of posterior chamber lenses. Am J Ophthalmol 96:435–438

    PubMed  CAS  Google Scholar 

  55. Nakazawa M, Ohtsuki K (1984) Apparent accommodation in pseudophakic eyes after implantation of posterior chamber lenses: optical analysis. Invest Ophthalmol Vis Sci 25:1458–1460

    PubMed  CAS  Google Scholar 

  56. Nguyen NX, Seitz B, Reese S, Langenbucher A, Kuchle M (2005) Accommodation after Nd: YAG capsulotomy in patients with accommodative posterior chamber lens 1CU. Graefes Arch Clin Exp Ophthalmol 243:120–126

    Article  PubMed  Google Scholar 

  57. Niessen AGJE, de Jong LB, van der Heijde GL (1992) Pseudo-accommodation in pseudophakia. Eur J Implant Refract Surg 4:91–94

    Google Scholar 

  58. Nishi O, Sakka Y (1990) Anterior capsule-supported intraocular lens. A new lens for small-incision surgery and for sealing the capsular opening. Graefes Arch Clin Exp Ophthalmol 228:582–588

    Article  PubMed  CAS  Google Scholar 

  59. Nishi O, Hara T, Hara T, Sakka Y, Hayashi F, Nakamae K, Yamada Y (1992) Refilling the lens with a inflatable endocapsular balloon: surgical procedure in animal eyes. Graefes Arch Clin Exp Ophthalmol 230:47–55

    Article  PubMed  CAS  Google Scholar 

  60. Nishi O, Nakai Y, Yamada Y, Mizumoto Y (1993) Amplitudes of accommodation of primate lenses refilled with two types of inflatable endocapsular balloons. Arch Ophthalmol 111:1677–1684

    PubMed  CAS  Google Scholar 

  61. Nishi O, Nishi K, Mano C, Ichihara M, Honda T (1997) Controlling the capsular shape in lens refilling. Arch Ophthalmol 115:507–510

    PubMed  CAS  Google Scholar 

  62. Nishi O, Nakai Y, Mizumoto Y, Yamada Y (1997) Capsule opacification after refilling the capsule with an inflatable endocapsular balloon. J Cataract Refract Surg 23:1548–1555

    PubMed  CAS  Google Scholar 

  63. Nishi O, Nishi K (1998) Accommodation amplitude after lens refilling with injectable silicone by sealing the capsule with a plug in primates. Arch Ophthalmol 116:1358–1361

    PubMed  CAS  Google Scholar 

  64. Nishi O, Nishi K, Mano C, Ichihara M, Honda T (1998) Lens refilling with injectable silicone in rabbit eyes. J Cataract Refract Surg 24:975–982

    PubMed  CAS  Google Scholar 

  65. Nishi O (2005) [After-cataract prevention and the restitution of accommodation—A new lens-refilling procedure. PPCCC+PBH: Proceedings 19th Congress of the German-speaking Society of Intraocular Lens Implantation and Refractive Surgery, Magdeburg 2005, pp247–250

  66. Olsen R, Mamalsi N, Haugen B (2006) A light-adjustable lens with injectable optics. Curr Opin Ophthalmol 17:72–79

    Article  Google Scholar 

  67. Oshika T, MimuraT, Tanaka S, Amano S, Fukuyama M, Yoshitomi F, Maeda N, Fujikado T, Hirohara Y, Mihashi T (2002) Apparent accommodation and corneal front aberration in pseudophakic eyes. Invest Ophthalmol Vis Sci 43:2882–2886

    PubMed  Google Scholar 

  68. Payer H (1997) Ringwulstlinse mit Zoomwirkung zur Verstärkung einer Pseudoakkommodation und deren Erklärung aus erweiterter Akkommodationstheorie. [Posterior chamber lens allowing cases of pseudoaccommodation]. Spektrum Augenheilkd 11:81–89

  69. Payer H, Reiter J (2003) Five years of experience with the Annular Ring Lens In: Guthoff R, Ludwig K (eds) Current aspects of human accommodation II. Kaden, Heidelberg, pp 179–192

  70. Preussner PR, Wahl J, Gerl R, Kreiner C, Serester A (2001) Accommodative lens implant. Ophthalmologe 98:97–102

    Article  PubMed  CAS  Google Scholar 

  71. Sacca Y, Hara T, Yamada Y, Hara T, Hayashi F (1996) Accommodation in primate eyes after implantation of refilled endocapsular balloon. Am J Ophthalmol 121:210–212

    Google Scholar 

  72. Sacu S, Menapace R, Wirtitsch M, Buehl W, Kriechbaum K (2004) Effect of anterior capsule polishing on fibrotic capsule opacification: three-year results. J Cataract Refract Surg 30:2322–2327

    PubMed  Google Scholar 

  73. Schaeffel F (2003) Optical techniques to measure the dynamics of accommodation. In: Guthoff R, Ludwig K (eds) Current aspects of human accommodation II. Kaden, Heidelberg, pp 71–94

    Google Scholar 

  74. Schwartz DM (2003) Light-adjustable lens. Trans Am Ophthalmol Soc 101:417–436

    PubMed  Google Scholar 

  75. Smith SG, Snowden F, Lamprecht EG (1987) Topographical anatomy of the ciliary sulcus. J Cataract Refract Surg 13:543–547

    PubMed  CAS  Google Scholar 

  76. Stachs O, Martin H, Kirchhoff A, Stave J, Terwee T, Guthoff R (2002) Monitoring accommodative ciliary muscle function using three-dimensional ultrasound. Arch Clin Exp Ophthalmol 240:906–912

    Google Scholar 

  77. Tassignon MJ, De Groot V, Vrensen GF (2002) Bag-in-the-lens implantation of intraocular lenses. J Cataract Refract Surg 28:1182–1188

    Article  PubMed  Google Scholar 

  78. Verzella F, Colossi A (1993) Multifocal effect of against-the-rule myopic astigmatism in pseudophakic eyes. Refract Corneal Surg 1:58–61

    Google Scholar 

  79. Werblin TP (2003) Discussion of article “Clinical evaluation of model AT-45 silicone accommodative intraocular lens: results of feasibility and the initial phase of a food and drug administration clinical trial”. Ophthalmology 108:2010

    Article  Google Scholar 

  80. Werner L, Pandey SK, Izak AM, Vargas LG, Trivedi RH, Apple DJ, Mamalis N (2004) Capsular bag opacification after experimental implantation of a new accommodating intraocular lens in rabbit eyes. J Cataract Refract Surg 30:1114–1123

    Article  PubMed  Google Scholar 

  81. Yamamoto S, Adachi-Usami E (1992) Apparent accommodation in pseudophakic eyes as measured with visually evoked potentials. Invest Ophthalmol Vi Sci 33:443–446

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Menapace.

Additional information

The author has no proprietary interest in any of the materials or equipment mentioned in this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menapace, R., Findl, O., Kriechbaum, K. et al. Accommodating intraocular lenses: a critical review of present and future concepts. Graefe's Arch Clin Exp Ophthalmol 245, 473–489 (2007). https://doi.org/10.1007/s00417-006-0391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-006-0391-6

Keywords

Navigation