Skip to main content

Advertisement

Log in

Neuro-visual rehabilitation

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Despite the fact that almost one-third of patients suffer from visual deficits following brain damage; neuro-visual rehabilitation to compensate for visual field deficits is relatively neglected in the clinical setting. This is in contrast to physio and speech therapies, which are the bread and butter of rehabilitative programs. Likewise, programs that address coping with dementia usually concentrate on language, memory and cognitive skills, but often fail to address the deficits experienced by the subset of patients suffering from progressive cortico-visual dysfunction. Herein, we will review the different approaches to neuro-visual rehabilitation, mainly concentrating on restorative and compensatory treatments. While the first claims to restore vision in the blind visual field, the latter attempts to improve the use of the remaining intact field. These approaches differ in their premise regarding the ability of the adult human brain to adapt following damage, reflecting different attitudes toward the presumed treatment target organ. While restorative therapies claim to reactivate inactive neurons within or around the damaged cortices, compensatory approaches aim to improve voluntary eye movements to compensate the visual loss. We will also briefly discuss the use of optical devices for bypassing the visual deficit as well as the use of the blind-sight phenomena to convert non-conscious visual abilities in the blind visual field into awareness. The various therapeutic approaches will be discussed in the context of patients suffering from hemianopsia and in patients suffering from posterior cortical atrophy. We will argue that of all, the compensatory strategies have shown the most promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rowe F, Brand D, Jackson CA et al (2009) Visual impairment following stroke: do stroke patients require vision assessment? Age Ageing 38:188–193

    Article  PubMed  Google Scholar 

  2. Clarke G (2005) Incidence of neurological vision impairment in patients who suffer from an acquired brain injury. Int Congr Ser 1282:365–369

    Article  Google Scholar 

  3. Burack-Weiss A (1992) Psychological aspects of aging and vision loss. In: Faye E, Stuen CS (eds) The aging eye and low vision: a study guide for physicians New York. Lighthouse, NY, pp 29–34

    Google Scholar 

  4. Wandell BA, Smirnakis SM (2009) Plasticity and stability of visual field maps in adult primary visual cortex. Nat Rev Neurosci 10:873–884

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Baker CI, Peli E, Knouf N, Kanwisher NG (2005) Reorganization of visual processing in macular degeneration. J Neurosci 25:614–618

    Article  CAS  PubMed  Google Scholar 

  6. Kerkhoff G (1999) Restorative and compensatory therapy approaches in cerebral blindness: a review. Restor Neurol Neurosci 15:255–271

    CAS  PubMed  Google Scholar 

  7. Suchoff IB, Kapoor N, Ciuffreda KJ, Rutner D, Han E, Craig S (2008) The frequency of occurrence, types, and characteristics of visual field defects in acquired brain injury: a retrospective analysis. Optometry 79:259–265

    Article  PubMed  Google Scholar 

  8. Zihl J, von Cramon D (1985) Visual field recovery from scotoma in patients with postgeniculate damage. A review of 55 cases. Brain 108(Pt 2):335–365

    Article  PubMed  Google Scholar 

  9. Kerkhoff G (2000) Neurovisual rehabilitation: recent developments and future directions. Am J Ophthalmol 130:687–688

    Article  CAS  PubMed  Google Scholar 

  10. Schaadt AK, Schmidt L, Reinhart S et al (2014) Perceptual relearning of binocular fusion and stereoacuity after brain injury. Neurorehabil Neural Repair 28:462–471

    Article  PubMed  Google Scholar 

  11. Schaadt AK, Schmidt L, Kuhn C et al (2014) Perceptual relearning of binocular fusion after hypoxic brain damage: four controlled single-case treatment studies. Neuropsychology 28:382–387

    Article  PubMed  Google Scholar 

  12. Funk J, Finke K, Reinhart S et al (2013) Effects of feedback-based visual line-orientation discrimination training for visuospatial disorders after stroke. Neurorehabil Neural Repair 27:142–152

    Article  PubMed  Google Scholar 

  13. Grunda T, Marsalek P, Sykorova P (2013) Homonymous hemianopia and related visual defects: restoration of vision after a stroke. Acta Neurobiol Exp 73:237–249

    Google Scholar 

  14. Moss AM, Harrison AR, Lee MS (2014) Patients with homonymous hemianopia become visually qualified to drive using novel monocular sector prisms. J Neuroophthalmol 34:53–56

    Article  PubMed  Google Scholar 

  15. Peli E (2000) Field expansion for homonymous hemianopia by optically induced peripheral exotropia. Optom Vision Sci Off Publ Am Acad Optom 77:453–464

    Article  CAS  Google Scholar 

  16. O’Neill EC, Connell PP, O’Connor JC, Brady J, Reid I, Logan P (2011) Prism therapy and visual rehabilitation in homonymous visual field loss. Optom Vision Sci Off Publ Am Acad Optom 88:263–268

    Article  Google Scholar 

  17. Bowers AR, Keeney K, Peli E (2014) Randomized crossover clinical trial of real and sham peripheral prism glasses for hemianopia. JAMA Ophthalmol 132:214–222

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sabel BA, Henrich-Noack P, Fedorov A, Gall C (2011) Vision restoration after brain and retina damage: the “residual vision activation theory”. Prog Brain Res 192:199–262

    Article  PubMed  Google Scholar 

  19. Kasten E, Wust S, Behrens-Baumann W, Sabel BA (1998) Computer-based training for the treatment of partial blindness. Nat Med 4:1083–1087

    Article  CAS  PubMed  Google Scholar 

  20. Sabel BA, Kasten E (2000) Restoration of vision by training of residual functions. Curr Opin Ophthalmol 11:430–436

    Article  CAS  PubMed  Google Scholar 

  21. Sabel BA (1999) Restoration of vision I: neurobiological mechanisms of restoration and plasticity after brain damage: a review. Restor Neurol Neurosci 15:177–200

    CAS  PubMed  Google Scholar 

  22. Sabel BA (1997) Unrecognized potential of surviving neurons: within systems plasticity, recovery of function, and the hypothesis of minimal residual structure. Neuroscientist 3:366–370

    Article  Google Scholar 

  23. Wessinger CM (1998) Those that were blind can now see. Nat Med 4:1005–1006

    Article  CAS  PubMed  Google Scholar 

  24. McFadzean RM (2006) NovaVision: vision restoration therapy. Curr Opin Ophthalmol 17:498–503

    Article  PubMed  Google Scholar 

  25. Poggel DA, Mueller I, Kasten E, Sabel BA (2008) Multifactorial predictors and outcome variables of vision restoration training in patients with post-geniculate visual field loss. Restor Neurol Neurosci 26:321–339

    PubMed  Google Scholar 

  26. Bouwmeester L, Heutink J, Lucas C (2007) The effect of visual training for patients with visual field defects due to brain damage: a systematic review. J Neurol Neurosurg Psychiatry 78:555–564

    Article  PubMed  Google Scholar 

  27. Schuett S (2009) The rehabilitation of hemianopic dyslexia. Nat Rev 5:427–437

    Google Scholar 

  28. Lovie-Kitchin JMJ, Riobinson J, Brown B (1990) What areas of the visual field are important for mobility in low vision patients? Clin Vision Sci 5:249–263

    Google Scholar 

  29. Zihl J (1995) Eye movement patterns in hemianopic dyslexia. Brain 118(Pt 4):891–912

    Article  PubMed  Google Scholar 

  30. Weiskrantz L, Warrington EK, Sanders MD, Marshall J (1974) Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 97:709–728

    Article  CAS  PubMed  Google Scholar 

  31. Sanders MD, Warrington EK, Marshall J, Wieskrantz L (1974) “Blindsight”: vision in a field defect. Lancet 1:707–708

    Article  CAS  PubMed  Google Scholar 

  32. Taub E, Mark VW, Uswatte G (2014) Implications of CI therapy for visual deficit training. Front Integrat Neurosci 8:78

    Google Scholar 

  33. Stoerig P (2008) Functional rehabilitation of partial cortical blindness? Restor Neurol Neurosci 26:291–303

    PubMed  Google Scholar 

  34. Chokron S, Perez C, Obadia M, Gaudry I, Laloum L, Gout O (2008) From blindsight to sight: cognitive rehabilitation of visual field defects. Restor Neurol Neurosci 26:305–320

    PubMed  Google Scholar 

  35. Cowey A (2010) The blindsight saga. Experimental brain research 200:3–24

    Article  PubMed  Google Scholar 

  36. Zihl J (1995) Visual scanning behavior in patients with homonymous hemianopia. Neuropsychologia 33:287–303

    Article  CAS  PubMed  Google Scholar 

  37. Trauzettel-Klosinski S, Brendler K (1998) Eye movements in reading with hemianopic field defects: the significance of clinical parameters. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 236:91–102

  38. Meienberg O, Zangemeister WH, Rosenberg M, Hoyt WF, Stark L (1981) Saccadic eye movement strategies in patients with homonymous hemianopia. Annals of neurology 9:537–544

    Article  CAS  PubMed  Google Scholar 

  39. Ishiai S, Furukawa T, Tsukagoshi H (1987) Eye-fixation patterns in homonymous hemianopia and unilateral spatial neglect. Neuropsychologia 25:675–679

    Article  CAS  PubMed  Google Scholar 

  40. Nelles G, Esser J, Eckstein A, Tiede A, Gerhard H, Diener HC (2001) Compensatory visual field training for patients with hemianopia after stroke. Neurosci Lett 306:189–192

    Article  CAS  PubMed  Google Scholar 

  41. Schuett S, Heywood CA, Kentridge RW, Zihl J (2008) Rehabilitation of hemianopic dyslexia: are words necessary for re-learning oculomotor control? Brain 131:3156–3168

    Article  PubMed  Google Scholar 

  42. Spitzyna GA, Wise RJ, McDonald SA et al (2007) Optokinetic therapy improves text reading in patients with hemianopic alexia: a controlled trial. Neurology 68:1922–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kerkhoff G, Munssinger U, Haaf E, Eberle-Strauss G, Stogerer E (1992) Rehabilitation of homonymous scotomata in patients with postgeniculate damage of the visual system: saccadic compensation training. Restor Neurol Neurosci 4:245–254

    CAS  PubMed  Google Scholar 

  44. Schuett S, Heywood CA, Kentridge RW, Dauner R, Zihl J (2012) Rehabilitation of reading and visual exploration in visual field disorders: transfer or specificity? Brain 135:912–921

    Article  PubMed  Google Scholar 

  45. Roth T, Sokolov AN, Messias A, Roth P, Weller M, Trauzettel-Klosinski S (2009) Comparing explorative saccade and flicker training in hemianopia: a randomized controlled study. Neurology 72:324–331

    Article  CAS  PubMed  Google Scholar 

  46. Benson DF, Davis RJ, Snyder BD (1988) Posterior cortical atrophy. Arch Neurol 45:789–793

    Article  CAS  PubMed  Google Scholar 

  47. Crutch SJ, Lehmann M, Schott JM, Rabinovici GD, Rossor MN, Fox NC (2012) Posterior cortical atrophy. Lancet Neurol 11:170–178

    Article  PubMed  PubMed Central  Google Scholar 

  48. McMonagle P, Deering F, Berliner Y, Kertesz A (2006) The cognitive profile of posterior cortical atrophy. Neurology 66:331–338

    Article  PubMed  Google Scholar 

  49. Yong KX, Shakespeare TJ, Cash D, Henley SM, Warren JD, Crutch SJ (2014) (Con)text-specific effects of visual dysfunction on reading in posterior cortical atrophy. Cortex J Dev Study Nerv Syst Behav 57:92–106

    Article  Google Scholar 

  50. Yong KX, Rajdev K, Shakespeare TJ, Leff AP, Crutch SJ (2015) Facilitating text reading in posterior cortical atrophy. Neurology 85:339–348

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mendez MF (2001) Visuospatial deficits with preserved reading ability in a patient with posterior cortical atrophy. Cortex J Dev Study Nerv Syst Behav 37:535–543

    Article  CAS  Google Scholar 

  52. Shakespeare TJ, Kaski D, Yong KX et al (2015) Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy. Brain 138:1976–1991

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shakespeare TJ, Pertzov Y, Yong KX, Nicholas J, Crutch SJ (2015) Reduced modulation of scanpaths in response to task demands in posterior cortical atrophy. Neuropsychologia 68:190–200

    Article  PubMed  Google Scholar 

  54. Riddoch MJ (1990) Visual agnosia: disorders of object recognition and what they tell us about normal vision: farah. Mj Biol Psychol 31:299–303

    Article  Google Scholar 

  55. Shames H, Raz N, Levin N (2015) Functional neural substrates of posterior cortical atrophy patients. J Neurol 262:1751–1761

    Article  CAS  PubMed  Google Scholar 

  56. Pisella L, Biotti D, Vighetto A (2015) Combination of attentional and spatial working memory deficits in Balint-Holmes syndrome. Ann N Y Acad Sci 1339:165–175

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Levin N. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant agreement No 641805.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Netta Levin.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raz, N., Levin, N. Neuro-visual rehabilitation. J Neurol 264, 1051–1058 (2017). https://doi.org/10.1007/s00415-016-8291-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-016-8291-0

Keywords

Navigation