Skip to main content

Advertisement

Log in

Cerebral small vessel disease, cognitive reserve and cognitive dysfunction

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The concept of cognitive reserve describes differences between individuals in the ability to compensate age-related brain changes or pathology as a result of greater intellectual enrichment. Cerebral small vessel disease (CSVD) is a common age-related vascular disease of the brain associated with slowly accumulating tissue damage and represents a leading cause of functional loss, disability and cognitive decline in the elderly. The promotion of cognitive reserve might be a valuable possibility to moderate the negative impact of accumulating brain changes associated with CSVD on cognitive function and thus limit the functional consequences of CSVD. We here review existing studies investigating this topic in CSVD and provide conceptual considerations why future research is needed. Relevant studies were identified using the electronic databases PubMed and MEDLINE. Six studies including 7893 subjects were found that all focused on a single feature of CSVD only, i.e., white matter hyperintensities (WMH). We also included one study investigating 247 CADASIL patients. In general, they confirm that higher cognitive reserve (i.e., educational attainment) attenuates the negative impact of WMH on cognition. Further studies should attempt to replicate this association for all features of CSVD and to expand the concept to other areas of functional loss like disordered gait. Finally intervention studies will be needed to define when and how we can still increase our cognitive reserve and what kind and magnitude of protective effects this may offer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO (2012) Health topics: ageing. WHO. http://www.euro.who.int/en/health-topics/Life-stages/healthy-ageing/healthy-ageing

  2. Thompson CS, Hakim AM (2009) Living beyond our physiological means: small vessel disease of the brain is an expression of a systemic failure in arteriolar function: a unifying hypothesis. Stroke 40:e322–e330

    Article  PubMed  Google Scholar 

  3. Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9:689–701. doi:10.1016/S1474-4422(10)70104-6

    Article  PubMed  Google Scholar 

  4. Wardlaw JM, Smith C, Dichgans M (2013) Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol 12:483–497

    Article  PubMed  Google Scholar 

  5. Wardlaw JM, Smith EE, Biessels GJ et al (2013) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12:822–838. doi:10.1016/S1474-4422(13)70124-8

    Article  PubMed Central  PubMed  Google Scholar 

  6. Lawrence AJ, Patel B, Morris RG et al (2013) Mechanisms of cognitive impairment in cerebral small vessel disease: multimodal MRI results from the St George’s cognition and neuroimaging in stroke (SCANS) study. PLoS One 8:e61014. doi:10.1371/journal.pone.0061014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A, Al-Shahi Salman R, Warach S, Launer LJ, Van Buchem MA, Breteler MM, Microbleed Study Group (2009) Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 8(2):165–174. doi:10.1016/S1474-4422(09)70013-4

    Article  PubMed Central  PubMed  Google Scholar 

  8. Schmidt R, Grazer A, Enzinger C et al (2011) MRI-detected white matter lesions: do they really matter? J Neural Transm 118:673–681. doi:10.1007/s00702-011-0594-9

    Article  PubMed  Google Scholar 

  9. Launer LJ (2003) Epidemiology of white-matter lesions. Int Psychogeriatr 15(Suppl 1):99–103

    Article  PubMed  Google Scholar 

  10. Liao D, Cooper L, Cai J (1997) The prevalence and severity of white matter lesions, their relationship with age, ethnicity, gender, and cardiovascular disease risk factors: the ARIC Study. Neuroepidemiology 16:149–162

    Article  CAS  PubMed  Google Scholar 

  11. De Groot JC, de Leeuw FE, Oudkerk M et al (2000) Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann Neurol 47:145–151

    Article  PubMed  Google Scholar 

  12. De Leeuw FE, de Groot JC, Achten E et al (2001) Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study: the Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 70:9–14

    Article  PubMed Central  PubMed  Google Scholar 

  13. Chen X, Wen W, Anstey KJ, Sachdev PS (2009) Prevalence, incidence, and risk factors of lacunar infarcts in a community sample. Neurology 73:266–272. doi:10.1212/WNL.0b013e3181aa52ea

    Article  PubMed  Google Scholar 

  14. Vernooij M, van der Lugt A, Ikram M et al (2008) Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 70:1208–1214

    Article  CAS  PubMed  Google Scholar 

  15. Gouw AA, Van der Flier WM, van Straaten ECW et al (2006) Simple versus complex assessment of white matter hyperintensities in relation to physical performance and cognition: the LADIS study. J Neurol 253:1189–1196. doi:10.1007/s00415-006-0193-5

    Article  CAS  PubMed  Google Scholar 

  16. Poggesi A, Pantoni L, Inzitari D et al (2011) 2001-2011: A Decade of the LADIS (Leukoaraiosis And DISability) Study: What Have We Learned about White Matter Changes and Small-Vessel Disease? Cerebrovasc Dis 32:577–588. doi:10.1159/000334498

    Article  PubMed  Google Scholar 

  17. Prins ND, Scheltens P (2015) White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol 11:157–165. doi:10.1038/nrneurol.2015.10

    Article  PubMed  Google Scholar 

  18. Enzinger C, Smith S, Fazekas F et al (2006) Lesion probability maps of white matter hyperintensities in elderly individuals: results of the Austrian stroke prevention study. J Neurol 253:1064–1070. doi:10.1007/s00415-006-0164-5

    Article  PubMed  Google Scholar 

  19. Inzitari D, Pracucci G, Poggesi A et al (2009) Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort. BMJ 339:b2477–b2477. doi:10.1136/bmj.b2477

    Article  PubMed Central  PubMed  Google Scholar 

  20. Edwards JD, Jacova C, Sepehry A et al (2013) A quantitative systematic review of domain-specific cognitive impairment in lacunar stroke. Neurology 80:315–322. doi:10.1212/WNL.0b013e31827deb85

    Article  PubMed Central  PubMed  Google Scholar 

  21. Katzman R, Terry R, DeTeresa R et al (1988) Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 23:138–144. doi:10.1002/ana.410230206

    Article  CAS  PubMed  Google Scholar 

  22. Valenzuela MJ (2008) Brain reserve and the prevention of dementia. Curr Opin Psychiatry 21:296–302

    Article  PubMed  Google Scholar 

  23. Guo LH, Alexopoulos P, Wagenpfeil S, Kurz A, Perneczky R, Alzheimer’s disease neuroimaging initiative (2013) Brain size and the compensation of Alzheimer's disease symptoms: a longitudinal cohort study. Alzheimers Dement 9(5):580–586. doi:10.1016/j.jalz.2012.10.002

    Article  PubMed  Google Scholar 

  24. Stern Y (2012) Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 11:1006–1012. doi:10.1016/S1474-4422(12)70191-6

    Article  PubMed Central  PubMed  Google Scholar 

  25. Sumowski JF, Rocca MA, Leavitt VM et al (2013) Brain reserve and cognitive reserve in multiple sclerosis: what you’ve got and how you use it. Neurology 80:2186–2193. doi:10.1212/WNL.0b013e318296e98b

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ghaffar O, Fiati M, Feinstein A (2012) Occupational attainment as a marker of cognitive reserve in multiple sclerosis. PLoS One 7:e47206. doi:10.1371/journal.pone.0047206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Levi Y, Rassovsky Y, Agranov E et al (2013) Cognitive reserve components as expressed in traumatic brain injury. J Int Neuropsychol Soc 19:664–671

    Article  PubMed  Google Scholar 

  28. Pinter D, Sumowski J, Deluca J et al (2014) Higher education moderates the effect of t2 lesion load and third ventricle width on cognition in multiple sclerosis. PLoS One 9:e87567. doi:10.1371/journal.pone.0087567

    Article  PubMed Central  PubMed  Google Scholar 

  29. Nunnari D, Bramanti P, Marino S (2014) Cognitive reserve in stroke and traumatic brain injury patients. Neurol Sci 35:1513–1518. doi:10.1007/s10072-014-1897-z

    Article  PubMed  Google Scholar 

  30. Elkins JS, Longstreth WT, Manolio TA et al (2006) Education and the cognitive decline associated with MRI-defined brain infarct. Neurology 67:435–440. doi:10.1212/01.wnl.0000228246.89109.98

    Article  CAS  PubMed  Google Scholar 

  31. Glymour MM, Weuve J, Fay ME et al (2008) Social ties and cognitive recovery after stroke: does social integration promote cognitive resilience? Neuroepidemiology 31:10–20. doi:10.1159/000136646

    Article  PubMed Central  PubMed  Google Scholar 

  32. Ojala-Oksala J, Jokinen H, Kopsi V et al (2012) Educational history is an independent predictor of cognitive deficits and long-term survival in postacute patients with mild to moderate ischemic stroke. Stroke 43:2931–2935. doi:10.1161/STROKEAHA.112.667618

    Article  PubMed  Google Scholar 

  33. Farfel JM, Nitrini R, Suemoto CK et al (2013) Very low levels of education and cognitive reserve: a clinicopathologic study. Neurology 81:650–657. doi:10.1212/WNL.0b013e3182a08f1b

    Article  PubMed Central  PubMed  Google Scholar 

  34. Dufouil C, Alpérovitch A, Tzourio C (2003) Influence of education on the relationship between white matter lesions and cognition. Neurology 60:831–836

    Article  CAS  PubMed  Google Scholar 

  35. Nebes RD, Meltzer CC, Whyte EM, Scanlon JM, Halligan EM, Saxton JA, Houck PR, Boada FE, Dekosky ST (2006) The relation of white matter hyperintensities to cognitive performance in the normal old: education matters. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 13(3–4):326–340

    Article  PubMed  Google Scholar 

  36. Saczynski J, Jonsdottir M, Sigurdsson S et al (2008) White matter lesions and cognitive performance: the role of cognitively complex leisure activity. J Gerontol 63:848–854

    Article  Google Scholar 

  37. Brickman AM, Siedlecki KL, Muraskin J et al (2011) White matter hyperintensities and cognition: testing the reserve hypothesis. Neurobiol Aging 32:1588–1598. doi:10.1016/j.neurobiolaging.2009.10.013

    Article  PubMed Central  PubMed  Google Scholar 

  38. Vemuri P, Lesnick TG, Przybelski SA et al (2015) Vascular and amyloid pathologies are independent predictors of cognitive decline in normal elderly. Brain 138:761–771. doi:10.1093/brain/awu393

    Article  PubMed Central  PubMed  Google Scholar 

  39. Duering M, Zieren N, Hervé D et al (2011) Strategic role of frontal white matter tracts in vascular cognitive impairment: a voxel-based lesion-symptom mapping study in CADASIL. Brain 134:2366–2375. doi:10.1093/brain/awr169

    Article  PubMed  Google Scholar 

  40. Ringelstein EB, Kleffner I, Dittrich R et al (2010) Hereditary and non-hereditary microangiopathies in the young. An up-date. J Neurol Sci 299:81–85. doi:10.1016/j.jns.2010.08.037

    Article  PubMed  Google Scholar 

  41. Stern Y, Habeck C, Moeller J et al (2005) Brain networks associated with cognitive reserve in healthy young and old adults. Cereb Cortex 15:394–402. doi:10.1093/cercor/bhh142

    Article  PubMed Central  PubMed  Google Scholar 

  42. Sumowski JF, Wylie GR, Deluca J, Chiaravalloti N (2010) Intellectual enrichment is linked to cerebral efficiency in multiple sclerosis: functional magnetic resonance imaging evidence for cognitive reserve. Brain 133:362–374. doi:10.1093/brain/awp307

    Article  PubMed Central  PubMed  Google Scholar 

  43. López ME, Aurtenetxe S, Pereda E et al (2014) Cognitive reserve is associated with the functional organization of the brain in healthy aging: a MEG study. Front Aging Neurosci 6:1–9. doi:10.3389/fnagi.2014.00125

    Google Scholar 

  44. Bosch B, Bartrés-Faz D, Rami L et al (2010) Cognitive reserve modulates task-induced activations and deactivations in healthy elders, amnestic mild cognitive impairment and mild Alzheimer’s disease. Cortex 46:451–461. doi:10.1016/j.cortex.2009.05.006

    Article  PubMed  Google Scholar 

  45. Barulli D, Stern Y (2013) Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends Cogn Sci 17:1–17. doi:10.1016/j.tics.2013.08.012.Efficiency

    Article  Google Scholar 

  46. Nordahl C, Ranganath C, Yonelinas A et al (2006) White matter changes compromise prefrontal cortex function in healthy elderly individuals. J Cogn Neurosci 18:418–429. doi:10.1162/089892906775990552.White

    Article  PubMed Central  PubMed  Google Scholar 

  47. Venkatraman V, Aizenstein H, Guralnik J et al (2010) Executive control function, brain activation and white matter hyperintensities in older adults. Neuroimage 49:1–18. doi:10.1016/j.neuroimage.2009.11.019.Executive

    Article  Google Scholar 

  48. Linortner P, Fazekas F, Schmidt R et al (2012) White matter hyperintensities alter functional organization of the motor system. Neurobiol Aging 33:1–8

    Article  Google Scholar 

  49. Elbaz A, Vicente-Vytopilova P, Tavernier B et al (2013) Motor function in the elderly: evidence for the reserve hypothesis. Neurology 81:417–426

    Article  PubMed Central  PubMed  Google Scholar 

  50. Sajjad A, Mirza SS, Portegies MLP et al (2015) Subjective memory complaints and the risk of stroke. Stroke 46:170–175. doi:10.1161/STROKEAHA.114.006616

    Article  PubMed  Google Scholar 

  51. Ihara M, Okamoto Y, Hase Y, Takahashi R (2013) Association of physical activity with the visuospatial/executive functions of the montreal cognitive assessment in patients with vascular cognitive impairment. J Stroke Cerebrovasc Dis 22:146–151. doi:10.1016/j.jstrokecerebrovasdis.2012.10.007

    Article  Google Scholar 

  52. Verdelho A, Madureira S, Ferro JM et al (2012) Physical activity prevents progression for cognitive impairment and vascular dementia: results from the LADIS (Leukoaraiosis and Disability) study. Stroke 43:3331–3335. doi:10.1161/STROKEAHA.112.661793

    Article  PubMed  Google Scholar 

  53. Zieren N, Duering M, Peters N et al (2013) Education modifies the relation of vascular pathology to cognitive function: cognitive reserve in cerebral autosomal dominant arteriopathy. Neurobiol Aging 34:400–407

    Article  PubMed  Google Scholar 

  54. Amato MP, Razzolini L, Goretti B et al (2013) Cognitive reserve and cortical atrophy in multiple sclerosis: a longitudinal study. Neurology. doi:10.1212/WNL.0b013e3182918c6f

    Google Scholar 

  55. Cavalieri M, Enzinger C, Petrovic K et al (2010) Vascular dementia and Alzheimer’s disease—are we in a dead-end road? Neurodegener Dis 7:122–126. doi:10.1159/000285521

    Article  PubMed  Google Scholar 

  56. Brehmer Y, Kalpouzos G, Wenger E, Lövdén M (2014) Plasticity of brain and cognition in older adults. Psychol Res. doi:10.1007/s00426-014-0587-z

    PubMed  Google Scholar 

Download references

Conflicts of interest

D. Pinter has received funding from Genzyme/Sanofi-Aventis and speaking honoraria from Merck Serono. F. Fazekas serves on scientific advisory boards for Bayer Schering Pharma, Biogen Idec, Merck Serono, Novartis, D-Pharm Ltd., and Teva Pharmaceutical Industries Ltd./sanofi-aventis; serves on the editorial boards of Cerebrovascular Diseases, Multiple Sclerosis, the Polish Journal of Neurology and Neurosurgery, Stroke, and the Swiss Archives of Neurology and Psychiatry; and has received speaker honoraria from Biogen Idec, Bayer Schering Pharma, Merck Serono, and sanofi-aventis. C. Enzinger has received funding for travel and speaker honoraria from Biogen Idec, Bayer Schering Pharma, Merck Serono, Genzyme a sanofi company, and Teva Pharmaceutical Industries Ltd./sanofi-aventis; serves on scientific advisory boards for Bayer Schering Pharma, Biogen Idec, Merck Serono, Novartis, Genzyme a sanofi company, and Teva Pharmaceutical Industries Ltd./sanofi-aventis; serves on the editorial board of PloS One, and received research support from Merck Serono, Biogen Idec, and Teva Pharmaceutical Industries Ltd./sanofi-aventis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Fazekas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinter, D., Enzinger, C. & Fazekas, F. Cerebral small vessel disease, cognitive reserve and cognitive dysfunction. J Neurol 262, 2411–2419 (2015). https://doi.org/10.1007/s00415-015-7776-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7776-6

Keywords

Navigation