Skip to main content

Advertisement

Log in

Wound ballistic evaluation of the TASER® XREP ammunition

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The Taser® eXtended Range Electronic Projectile (XREP®) is a wireless conducted electrical weapon (CEW) designed to incapacitate a person from a larger distance. The aim of this study was to analyze the ballistic injury potential of the XREP. Twenty rounds were fired from the Taser®X12 TM shotgun into ballistic soap covered with artificial skin and clothing at different shooting distances (1–25 m). One shot was fired at pig skin at a shooting distance of 10 m. The average projectile velocity was 67.0 m/s. The kinetic energy levels on impact varied from 28–52 J. Depending on the intermediate target, the projectiles penetrated up to 4.2 cm into the ballistic soap. On impact the nose assembly did not separate from the chassis, and no electrical activation was registered. Upon impact, a skin penetration of the XREP cannot be excluded. However, it is very unlikely at shooting distances of 10 m or more. Clothing and a high elasticity limit of the target body area can significantly reduce the penetration risk on impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kroll MW (2009) Physiology and pathology of Taser® electronic devices. J Forensic Leg Med 16:173–177

    Article  PubMed  Google Scholar 

  2. Cahalan K.: Mossberg and Taser join forces to launch the X12 dedicated less-lethal shotgun. Press Release 2008; available at: http://www.mossberg.com/press/pdf/41.pdf

  3. TASER XREP Product Information Sheet; available at: http://www.apbweb.com/images/XREP.pdf

  4. Sellier K, Kneubuehl BP. Wundballistik und ihre ballistischen Grundlagen. 2. völlig überarbeitete und ergänzte Auflage. Springer, Berlin 2001. 237.

  5. Osirix DICOM – Viewer Version 3.8.1. 2010; available at http://www.osirix-viewer.com

  6. Kneubuehl BP. k-analyzer. 2002; available at http://www.kneubuehl.com/k-analyzer.html

  7. Jauchem JR, Cook MC, Beason C (2008) W. Blood factors of Sus scrofa following a series of three Taser® electronic control device exposures. Forensic Sci Int 175:166–70

    Article  PubMed  CAS  Google Scholar 

  8. Jauchem JR, Seaman RL, Fines DA (2011) Survival of anesthetized Sus scrofa after cycling (7 s on/3 s off) exposures to a Taser® X26 electronic control device for three minutes. Am J Forensic Med Pathol 32(2):124–130

    Article  PubMed  Google Scholar 

  9. Jauchem JR (2010) An animal model to investigate effectiveness and safety of conducted energy weapons (including TASER devices). J Forensic Sci 55:521–6

    Article  PubMed  Google Scholar 

  10. Dennis AJ, Valentino DJ, Walter RJ et al (2007) Acute effects of TASER X26 discharges in a swine model. J Trauma 63:581–90

    Article  PubMed  Google Scholar 

  11. Dawes DM, Ho JD, Reardon RF, Strote SR, Nelson RS, Lundin EJ et al (2011) The respiratory, metabolic, and neuroendocrine effects of a new generation electronic control device. Forensic Sci Int 207:55–60

    Article  PubMed  Google Scholar 

  12. Kroll M, Ho J (2009) Taser® conducted electrical weapons: physiology, pathology, and law. Springer, New York

    Google Scholar 

  13. Haileyesus T, Annest JL, Mercy JA (2011) Non-fatal conductive energy device-related injuries treated in US emergency departments. 2005–2008. Inj Prev 17(2):127–30

    Article  PubMed  Google Scholar 

  14. Pasquier M, Carron PN, Vallotton L, Yersin B (2011) Electronic control device exposure: a review of morbidity and mortality. Ann Emerg Med 58(2):178–88, Epub 2011 May 5

    Article  PubMed  Google Scholar 

  15. Dawes DM, Ho J, Johnson M, Miner J, Lundin E. Breathing parameters, venous gases, and serum chemistries with exposure to a new wireless projectile conducted electrical weapon. Fourth Mediterranean Emergency Medicine Congress (MEMC IV), USA. 2007.

  16. Ho J, Dawes D, Miner J. Serum biomarker effect of prolonged TASER XREP device exposure. EuSEM, Hennepin County Medical Center, Minneapolis, 2008.

  17. Dawes D, Ho J, Olsen J, Miner J. The effect of the extended range electronic projectile (XREP) on breathing. Australian College of Emergency Medicine winter symposium. Hennepin County Medical Center, Minneapolis, 2008.

  18. Ho J, Dawes D, Reardon R, Lapine A, Miner J. Echocardiographic determination of cardiac rhythm during trans-thoracic wireless conducted electrical weapon exposure. Australian College of Emergency Medicine winter symposium. Hennepin County Medical Center, Minneapolis, 2008.

  19. Di Maio VJM, Copeland AR, Besant-Matthews PE, Fletcher LA, Jones A (1982) Minimal velocities necessary for perforation of skin by air gun pellets and bullets. J Forensic Sci 27:894–898

    Google Scholar 

  20. Mattoo BN, Wani AK, Asgekar MD (1974) Casualty criteria for wounds from firearms with special reference to shot penetration. II J Forensic Sci 19(3):585–9

    CAS  Google Scholar 

  21. Bir CA, Steward SJ, Wilhelm M (2005) Skin penetration assessment of less lethal kinetic energy munitions. J Forensic Sci 50(6):1426–29

    Article  PubMed  Google Scholar 

  22. Kneubuehl BP (2004) Geschosse Band 2: Ballistik, Wirksamkeit, Messtechnik, 1st edn. Verlag Stocker Schmid, Dietikon

    Google Scholar 

  23. Chen SL, Richard CK, Murthy RC, Lauer AK (2006) Perforating ocular injury by Taser. Clin Experiment Ophthalmol 34(4):378–80

    Article  PubMed  Google Scholar 

  24. Viano DC, King AI (2008) Biomechanics of chest and abdomen impact. In: Peterson DR, Bronzino JD (eds) Biomechanics: principles and applications. CRC, Boca Raton

    Google Scholar 

  25. Carroll AW, Soderstrom CA (1978) A new nonpenetrating ballistic injury. Ann Surg 188(6):753–7

    Article  PubMed  CAS  Google Scholar 

  26. Cooper GJ, Taylor DE (1989) Biophysics of impact injury to the chest and abdomen. J Army Med Corps 135(2):58–67

    CAS  Google Scholar 

  27. Moseley RV, Vernick JJ (1970) Doty DB; Response to blunt chest injury: a new experimental model. J Trauma 10(8):673–83

    Article  PubMed  CAS  Google Scholar 

  28. Drobin D, Gryth D, Persson JK, Rocksén D, Arborelius UP, Olsson LG et al (2007) Electroencephalogram, circulation, and lung function after high-velocity behind armor blunt trauma. J Trauma 63:405–13

    Article  PubMed  Google Scholar 

  29. Gryth D, Rocksén D, Persson JK, Arborelius UP, Drobin D, Bursell J et al (2007) Severe lung contusion and death after high-velocity behind-armor blunt trauma: relation to protection level. Mil Med 172(10):1110–6

    PubMed  Google Scholar 

  30. Link MS, Wang PJ, Pandian NG et al (1998) An experimental model of sudden death due to low-energy chest wall impact (commotio cordis). N Engl J Med 338:1805–11

    Article  PubMed  CAS  Google Scholar 

  31. Cannon L (2001) Behind armour blunt trauma—an emerging problem. J R Army Med Corps 147(1):87–96

    PubMed  CAS  Google Scholar 

  32. Deady B, Innes G (1999) Sudden death of a young hockey player: case report of commotio cordis. J Emerg Med 17(3):459–62

    Article  PubMed  CAS  Google Scholar 

  33. Jansen LH, Rottier PB (1958) Some mechanical properties of human abdominal skin measured on excised strips. Dermatologica 117:65–83

    Article  PubMed  CAS  Google Scholar 

  34. Ankersen J, Birkbeck AE, Thomson RD, Vanezis P (1999) Puncture resistance and tensile strength of skin simulants. J of Engineering in Med 213:493–501

    Article  CAS  Google Scholar 

Download references

Conflicts of interest

This paper is a result of experiments which were performed under the supervision of the state police. The research was not funded financially, and there is no actual or potential conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian N. Kunz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunz, S.N., Adamec, J., Zinka, B. et al. Wound ballistic evaluation of the TASER® XREP ammunition. Int J Legal Med 127, 119–126 (2013). https://doi.org/10.1007/s00414-011-0628-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-011-0628-8

Keywords

Navigation