Skip to main content
Log in

Verapamil prevents torsade de pointes by reduction of transmural dispersion of repolarization and suppression of early afterdepolarizations in an intact heart model of LQT3

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

In long QT syndrome (LQTS), prolongation of the QT–interval is associated with sudden cardiac death resulting from potentially life–threatening polymorphic tachycardia of the torsade de pointes (TdP) type. Experimental as well as clinical reports support the hypothesis that calcium channel blockers such as verapamil may be an appropriate therapeutic approach in LQTS. We investigated the electrophysiologic mechanism by which verapamil suppresses TdP, in a recently developed intact heart model of LQT3.

Methods and results

In 8 Langendorff–perfused rabbit hearts, veratridine (0.1 µM), an inhibitor of sodium channel inactivation, led to a marked increase in QT–interval and simultaneously recorded monophasic ventricular action potentials (MAPs) (p < 0.05) thereby mimicking LQT3. In bradycardic (AV–blocked) hearts, simultaneous recording of up to eight epi– and endocardial MAPs demonstrated a significant increase in total dispersion of repolarization (56%, p < 0.05) and reverse frequency–dependence. After lowering potassium concentration, veratridine reproducibly led to early afterdepolarizations (EADs) and TdP in 6 of 8 (75%) hearts. Additional infusion of verapamil (0.75 µM) suppressed EADs and consecutively TdP in all hearts. Verapamil significantly shortened endocardial but not epicardial MAPs which resulted in significant reduction of ventricular transmural dispersion of repolarization.

Conclusions

Verapamil is highly effective in preventing TdP via shortening of endocardial MAPs, reduction of left ventricular transmural dispersion of repolarization and suppression of EADs in an intact heart model of LQT3. These data suggest a possible therapeutic role of verapamil in the treatment of LQT3 patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akar FG, Yan GX, Antzelevitch C, Rosenbaum DS (2002) Unique topographical distribution of M cells underlies reentrant mechanism of torsade de pointes in the long–QT syndrome. Circulation 105:1247–1253

    Article  PubMed  Google Scholar 

  2. Antzelevitch C, Sun ZQ, Zhang ZQ, Yan G (1996) Cellular and ionic mechanisms underling erythromycin–induced long QT intervals and Torsade de Pointes. J Am Coll Cardiol 28:1836–1848

    CAS  PubMed  Google Scholar 

  3. Cosio FG, Goicolea A, Lopez GM, Kallmeyer C, Barroso JL (1991) Suppression of Torsades de Pointes with verapamil in patients with atrio–ventricular block. Eur Heart J 12:635–638

    CAS  PubMed  Google Scholar 

  4. Dessertenne F (1966) La tachycardie ventriculaire à deux foyers opposés variables. Arch Mal Coeur 59:263–272

    CAS  PubMed  Google Scholar 

  5. Dumaine R, Antzelevitch C (2002) Molecular mechanisms underlying the long QT syndrome. Curr Opin Cardiol 17:36–42

    Article  PubMed  Google Scholar 

  6. Eckardt L, Haverkamp W, Mertens H, Johna R, Clague JR, Borggrefe M (1998) Drug–related torsades de pointes in the isolated rabbit heart: comparison of clofilium, d, l–sotalol, and erythromycin. J Cardiovasc. Pharmacol 32:425–434

    Google Scholar 

  7. Eckardt L, Haverkamp W, Borggrefe M, Breithardt G (1998) Experimental models of torsade de pointes. Cardiovasc Res 39:178–193

    Article  CAS  PubMed  Google Scholar 

  8. Eckardt L, Breithardt G, Haverkamp W (2001) Electrophysiologic characterization of the antipsychotic drug sertindole in a rabbit heart model of torsade de pointes: low torsadogenic potential despite QT prolongation. J Pharmacol Exp Ther 300:64–71

    Google Scholar 

  9. Franz MR, Kirchhof PF, Fabritz CL, Zabel M (1995) Computer analysis of monophasic action potentials: Manual validation and clinically pertinent applications. Pacing Clin Electrophysiol 18:1666–1678

    CAS  PubMed  Google Scholar 

  10. Fetsch T, Bauer P, Engberding R, Koch H, Lukl J, Meinertz T, Oeff M, Seipel L, Trappe H, Treese N, Breithardt G (2004) Prevention of atrial fibrillation after cardioversion – Results of the PAFAC trial. Eur Heart J 25:1385–1394

    Article  PubMed  Google Scholar 

  11. Gerhardy A, Scholtysik G, Schaad A, Haltiner R, Hess T (1998) Generating and influencing Torsades de Pointes – like polymorphic ventricular tachycardia in isolated guinea pig hearts. Basic Res Cardiol 93:285–294

    Article  CAS  PubMed  Google Scholar 

  12. Hondeghem LM, Carlsson L, Duker G (2001) Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic. Circulation 103:2004–2013

    CAS  PubMed  Google Scholar 

  13. Hondeghem LM, Snyders DJ (1990) Class III antiarrhythmic agents have a lot of potential but a long way to go. Reduced effectiveness and dangers of reverse use dependence. Circulation 81:686–690

    CAS  PubMed  Google Scholar 

  14. Jackman WM, Szabo B, Friday KJ, Margolis PD, Moulton K, Wang X (1990) Ventricular tachyarrhythmias related to early afterdepolarizations and triggered firing: relationship to QT interval prolongation and potential therapeutic role for calcium channel blocking agents. J Cardiovasc Electrophysiol 1:170–195

    Google Scholar 

  15. January CT, Riddle JM, Salata JJ (1987) A model for early afterdepolarizations: Induction with the Ca(2+) channel agonist Bay K 8644. Circ Res 62:563–571

    Google Scholar 

  16. January CT, Gong Q, Zhou Z (2000) Long QT syndrome: cellular basis and arrhythmia mechanism in LQT2. J Cardiovasc Electrophysiol 11:1413–1418

    CAS  PubMed  Google Scholar 

  17. January CT, Riddle JM (1989) Early afterdepolarizations: Mechanism of induction and block. A role for L–type Ca(2+) current. Circ Res 64:977–990

    CAS  PubMed  Google Scholar 

  18. Komiya N, Tanaka K, Doi Y, Fukae S, Nakao K, Isomoto S (2003) A patient with LQTS in whom verapamil administration and permanent pacemaker implantation were useful for preventing torsade de pointes. Pacing Clin Electrophysiol 27:123–124

    Google Scholar 

  19. Lauer MR, Liem LB, Young C, Sung RJ (1992) Cellular and clinical electrophysiology of verapamil–sensitive ventricular tachycardias. J Cardiovasc Electrophysiol 3:500–514

    Google Scholar 

  20. Liao WB, Bullard MJ, Kuo CT, Hsiao CT, Chu PH, Chiang CW (1996) Anticholinergic overdose induced torsade de pointes successfully treated with verapamil. Jpn Heart J 37:925–931

    CAS  PubMed  Google Scholar 

  21. Milberg P, Eckardt L, Bruns HJ, Biertz J, Ramtin S, Reinsch N, Fleischer D, Kirchhof P, Fabritz L, Breithardt G, Haverkamp W (2002) Divergent proarrhythmic potential of macrolide antibiotics despite similar QT prolongation: fast phase 3 repolarization prevents early afterdepolarizations and torsade de pointes. J Pharmacol Exp Ther 303:218–225

    Google Scholar 

  22. Milberg P, Ramtin S, Mönnig G, Osada N, Wasmer K, Breithardt G Eckardt L (2004) Comparision of the in vitro electrophysiologic and proarrhythmic effects of amiodarone and sotalol in a rabbit model of acute atrioventricular block. J Cardiovasc Pharmacol 44:278–286

    CAS  PubMed  Google Scholar 

  23. Milberg P, Reinsch N, Wasmer K, Mönnig G, Stypmann J, Osada N, Breithardt G, Haverkamp W, Eckardt L (2005) Transmural dispersion of repolarization as a key factor of arrhythmogenicity in a novel intact heart model of LQT3. Cardiovasc Res 65:397–404

    CAS  PubMed  Google Scholar 

  24. Priori SG, Napolitano C, Cantu F, Brown AM, Schwartz PJ (1996) Differential response to Na+ channel blockade, betaadrenergic stimulation, and rapid pacing in a cellular model mimicking the SCN5A and HERG defects present in the long–QT syndrome. Circ Res 78:1009–1015

    CAS  PubMed  Google Scholar 

  25. Shimizu W, Ohe T, Kurita T, Kawade M, Arakaki Y, Aihara N (1995) Effects of verapamil and propranolol on early afterdepolarizations and ventricular arrhythmias induced by epinephrine in congenital long QT syndrome. J Am Coll Cardiol 26:1299–1309

    Article  CAS  PubMed  Google Scholar 

  26. Shimizu W, Ohe T, Kurita T, Tokuda T, Shimomura K (1994) Epinephrineinduced ventricular premature complexes due to early afterdepolarizations and effects of verapamil and propranolol in a patient with congenital long QT syndrome. J Cardiovasc Electrophysiol 5:438–444

    CAS  PubMed  Google Scholar 

  27. Shimizu W, Antzelevitch C (1997) Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade des pointes in LQT2 and LQT3 models of the long–QT syndrome. Circulation 96:2038–2047

    CAS  PubMed  Google Scholar 

  28. Striessnig J, Glossmann H, Catterall WA (1990) Identification of a phenylalkylamine binding region within the alpha 1 subunit of skeletal muscle Ca2+ channels. Proc Natl Acad Sci USA 87:9108–9112

    CAS  PubMed  Google Scholar 

  29. Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL, Moss AJ (1995) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80:805–811

    Article  CAS  PubMed  Google Scholar 

  30. Wang Q, Chen Q, Li H, Towbin JA (1997) Molecular genetics of long QT syndrome from genes to patients. Curr Opin Cardiol 12:310–320

    CAS  PubMed  Google Scholar 

  31. Wang HS, Cohen IS (2002) Calcium channel heterogeneity in canine left ventricular myocytes. J Physiol 547:825–833

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Milberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milberg, ., Reinsch, ., Osada, N. et al. Verapamil prevents torsade de pointes by reduction of transmural dispersion of repolarization and suppression of early afterdepolarizations in an intact heart model of LQT3. Basic Res Cardiol 100, 365–371 (2005). https://doi.org/10.1007/s00395-005-0533-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-005-0533-8

Key words

Navigation