Skip to main content
Log in

Klassifikation autoinflammatorischer Erkrankungen anhand pathophysiologischer Mechanismen

Classification of autoinflammatory diseases based on pathophysiological mechanisms

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Monogene autoinflammatorische Erkrankungen präsentieren sich mit systemischer Inflammation unter Einbeziehung multipler Organe. Mithilfe moderner molekulargenetischer Techniken konnte in den letzten Jahren eine Vielzahl an Erkrankungen mit bisher unbekannten Pathomechanismen beschrieben werden. Diese Erkenntnisse können herangezogen werden, um autoinflammatorische Erkrankungen anhand der involvierten Signalwege zu gruppieren und somit ein besseres Verständnis dieser Entitäten zu vermitteln.

Abstract

Monogenic autoinflammatory diseases present with systemic inflammation with the involvement of multiple organs. With the help of modern molecular genetic techniques a large number of diseases with previously unknown pathomechanisms have been described in recent years. This knowledge can be utilized to group autoinflammatory diseases according to the signalling pathways involved and thus provide a better understanding of these entities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. McDermott MF et al (1999) Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97:133–144. https://doi.org/10.1016/s0092-8674(00)80721-7

    Article  CAS  PubMed  Google Scholar 

  2. Moghaddas F, Masters SL (2018) The classification, genetic diagnosis and modelling of monogenic autoinflammatory disorders. Clin Sci 132:1901–1924. https://doi.org/10.1042/CS20171498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McGonagle D, McDermott MF (2006) A proposed classification of the immunological diseases. PLoS Med 3:e297. https://doi.org/10.1371/journal.pmed.0030297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou Q et al (2016) Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet 48:67–73. https://doi.org/10.1038/ng.3459

    Article  CAS  PubMed  Google Scholar 

  5. Zhou Q et al (2016) Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A 113:10127–10132. https://doi.org/10.1073/pnas.1612594113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ombrello MJ et al (2012) Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N Engl J Med 366:330–338. https://doi.org/10.1056/NEJMoa1102140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cuchet-Lourenco D et al (2018) Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science 361:810–813. https://doi.org/10.1126/science.aar2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Jesus AA, Canna SW, Liu Y, Goldbach-Mansky R (2015) Molecular mechanisms in genetically defined autoinflammatory diseases: disorders of amplified danger signaling. Annu Rev Immunol 33:823–874. https://doi.org/10.1146/annurev-immunol-032414-112227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goldbach-Mansky R et al (2019) Classification of genetically defines autoinflammatory diseases. In: Textbook of Autoinflammation, 1. Aufl.

    Google Scholar 

  10. Kallinich T et al (2013) Unexplained recurrent fever: when is autoinflammation the explanation? Allergy 68:285–296. https://doi.org/10.1111/all.12084

    Article  CAS  PubMed  Google Scholar 

  11. https://www.nomidalliance.org/downloads/comparative_chart_front.pdf. Zugegriffen: November 2019

  12. Hashkes P et al (2019) Clinical approach to the diagnosis of autoinflammatory Diseases. In: Textbook of Autoinflammation. Springer, Berlin

    Chapter  Google Scholar 

  13. Bettiol A et al (2019) Unveiling the efficacy, safety, and tolerability of anti-Interleukin‑1 treatment in monogenic and multifactorial autoinflammatory diseases. Int J Mol Sci. https://doi.org/10.3390/ijms20081898

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sohar E, Gafni J, Pras M, Heller H (1967) Familial Mediterranean fever. A survey of 470 cases and review of the literature. Am J Med 43:227–253. https://doi.org/10.1016/0002-9343(67)90167-2

    Article  CAS  PubMed  Google Scholar 

  15. Tunca M et al (2005) Familial Mediterranean fever (FMF) in Turkey: results of a nationwide multicenter study. Medicine 84:1–11. https://doi.org/10.1097/01.md.0000152370.84628.0c

    Article  PubMed  Google Scholar 

  16. Ben-Chetrit E, Hayrapetyan H, Yegiazaryan A, Shahsuvaryan G, Sarkisian T (2015) Familial Mediterranean fever in Armenia in 2015: some interesting lessons. Clin Exp Rheumatol 33:S15–S18

    PubMed  Google Scholar 

  17. Brenner R et al (2018) Familial Mediterranean fever and incidence of cancer: an analysis of 8,534 Israeli patients with 258,803 person-years. Arthritis Rheumatol 70:127–133. https://doi.org/10.1002/art.40344

    Article  PubMed  Google Scholar 

  18. Tamir N et al (1999) Late-onset familial Mediterranean fever (FMF): a subset with distinct clinical, demographic, and molecular genetic characteristics. Am J Med Genet 87:30–35

    Article  CAS  PubMed  Google Scholar 

  19. Kallinich T, Orak B, Wittkowski H (2017) Role of genetics in familial Mediterranean fever. Z Rheumatol 76:303–312. https://doi.org/10.1007/s00393-017-0265-9

    Article  CAS  PubMed  Google Scholar 

  20. Kallinich T et al (2019) Evidence-based treatment recommendations for familial Mediterranean fever : a joint statement by the Society for Pediatric and Adolescent Rheumatology and the German Society for Rheumatology. Z Rheumatol 78:91–101. https://doi.org/10.1007/s00393-018-0588-1

    Article  CAS  PubMed  Google Scholar 

  21. Park YH, Wood G, Kastner DL, Chae JJ (2016) Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol 17:914–921. https://doi.org/10.1038/ni.3457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao W, Yang J, Liu W, Wang Y, Shao F (2016) Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Proc Natl Acad Sci U S A 113:E4857–E4866. https://doi.org/10.1073/pnas.1601700113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schnappauf O, Chae JJ, Kastner DL, Aksentijevich I (2019) The Pyrin inflammasome in health and disease. Front Immunol 10:1745. https://doi.org/10.3389/fimmu.2019.01745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Masters SL et al (2016) Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci Transl Med 8:332ra345. https://doi.org/10.1126/scitranslmed.aaf1471

    Article  CAS  Google Scholar 

  25. Moghaddas F et al (2017) A novel pyrin-associated autoinflammation with neutrophilic dermatosis mutation further defines 14-3‑3 binding of pyrin and distinction to familial mediterranean fever. Ann Rheum Dis 76:2085–2094. https://doi.org/10.1136/annrheumdis-2017-211473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29:301–305. https://doi.org/10.1038/ng756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cuisset L et al (2011) Mutations in the autoinflammatory cryopyrin-associated periodic syndrome gene: epidemiological study and lessons from eight years of genetic analysis in France. Ann Rheum Dis 70:495–499. https://doi.org/10.1136/ard.2010.138420

    Article  CAS  PubMed  Google Scholar 

  28. Sanchez GA, de Jesus AA, Goldbach-Mansky R (2013) Monogenic autoinflammatory diseases: disorders of amplified danger sensing and cytokine dysregulation. Rheum Dis Clin North Am 39:701–734. https://doi.org/10.1016/j.rdc.2013.08.001

    Article  PubMed  Google Scholar 

  29. Rowczenio DM et al (2017) Late-onset cryopyrin-associated periodic syndromes caused by somatic NLRP3 mosaicism-UK single center experience. Front Immunol 8:1410. https://doi.org/10.3389/fimmu.2017.01410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bachetti T, Ceccherini I (2014) Tumor necrosis factor receptor-associated periodic syndrome as a model linking autophagy and inflammation in protein aggregation diseases. J Mol Med 92:583–594. https://doi.org/10.1007/s00109-014-1150-5

    Article  CAS  PubMed  Google Scholar 

  31. Lachmann HJ et al (2014) The phenotype of TNF receptor-associated autoinflammatory syndrome (TRAPS) at presentation: a series of 158 cases from the Eurofever/EUROTRAPS international registry. Ann Rheum Dis 73:2160–2167. https://doi.org/10.1136/annrheumdis-2013-204184

    Article  CAS  PubMed  Google Scholar 

  32. Gattorno M et al (2019) Classification criteria for autoinflammatory recurrent fevers. Ann Rheum Dis 78:1025–1032. https://doi.org/10.1136/annrheumdis-2019-215048

    Article  CAS  PubMed  Google Scholar 

  33. Toplak N et al (2010) Periodic fever syndromes in Eastern and Central European countries: results of a pediatric multinational survey. Pediatr Rheumatol Online J 8:29. https://doi.org/10.1186/1546-0096-8-29

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hull KM et al (2002) The TNF receptor-associated periodic syndrome (TRAPS): emerging concepts of an autoinflammatory disorder. Medicine 81:349–368. https://doi.org/10.1097/00005792-200209000-00002

    Article  CAS  PubMed  Google Scholar 

  35. http://www.autoinflammatie.nl/ENG/folder6/index.php. Zugegriffen: November 2019

  36. Ter Haar NM et al (2016) The phenotype and genotype of mevalonate kinase deficiency: a series of 114 cases from the Eurofever registry. Arthritis Rheumatol 68:2795–2805. https://doi.org/10.1002/art.39763

    Article  CAS  PubMed  Google Scholar 

  37. Kuijk LM et al (2008) HMG-CoA reductase inhibition induces IL-1beta release through Rac1/PI3K/PKB-dependent caspase‑1 activation. Blood 112:3563–3573. https://doi.org/10.1182/blood-2008-03-144667

    Article  CAS  PubMed  Google Scholar 

  38. van der Burgh R et al (2014) Unprenylated RhoA contributes to IL-1beta hypersecretion in mevalonate kinase deficiency model through stimulation of Rac1 activity. J Biol Chem 289:27757–27765. https://doi.org/10.1074/jbc.M114.571810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jesus AA et al (2011) A novel mutation of IL1RN in the deficiency of interleukin‑1 receptor antagonist syndrome: description of two unrelated cases from Brazil. Arthritis Rheum 63:4007–4017. https://doi.org/10.1002/art.30588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu J, Chen ZJ (2014) Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol 32:461–488. https://doi.org/10.1146/annurev-immunol-032713-120156

    Article  CAS  PubMed  Google Scholar 

  41. Ivashkiv LB, Donlin LT (2014) Regulation of type I interferon responses. Nat Rev Immunol 14:36–49. https://doi.org/10.1038/nri3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hooks JJ et al (1979) Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med 301:5–8. https://doi.org/10.1056/NEJM197907053010102

    Article  CAS  PubMed  Google Scholar 

  43. Norton WL, Velayos E, Robison L (1970) Endothelial inclusions in dermatomyositis. Ann Rheum Dis 29:67–72. https://doi.org/10.1136/ard.29.1.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Greenberg SA (2010) Dermatomyositis and type 1 interferons. Curr Rheumatol Rep 12:198–203. https://doi.org/10.1007/s11926-010-0101-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Crow YJ (2011) Type I interferonopathies: a novel set of inborn errors of immunity. Ann N Y Acad Sci 1238:91–98. https://doi.org/10.1111/j.1749-6632.2011.06220.x

    Article  CAS  PubMed  Google Scholar 

  46. Zhang X et al (2015) Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation. Nature 517:89–93. https://doi.org/10.1038/nature13801

    Article  CAS  PubMed  Google Scholar 

  47. Watkin LB et al (2015) COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat Genet 47:654–660. https://doi.org/10.1038/ng.3279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu Y et al (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371:507–518. https://doi.org/10.1056/NEJMoa1312625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jeremiah N et al (2014) Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest 124:5516–5520. https://doi.org/10.1172/JCI79100

    Article  PubMed  PubMed Central  Google Scholar 

  50. Konig N et al (2017) Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis 76:468–472. https://doi.org/10.1136/annrheumdis-2016-209841

    Article  CAS  PubMed  Google Scholar 

  51. Sanchez GAM et al (2018) JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest 128:3041–3052. https://doi.org/10.1172/JCI98814

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fremond ML et al (2016) Efficacy of the Janus kinase 1/2 inhibitor ruxolitinib in the treatment of vasculopathy associated with TMEM173-activating mutations in 3 children. J Allergy Clin Immunol 138(6):1752–1755. https://doi.org/10.1016/j.jaci.2016.07.015

    Article  CAS  PubMed  Google Scholar 

  53. Rodero MP, Crow YJ (2016) Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J Exp Med 213:2527–2538. https://doi.org/10.1084/jem.20161596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gunther C, Schmidt F, Konig N, Lee-Kirsch MA (2016) Type I interferonopathies. Systemic inflammatory diseases triggered by type I interferons. Z Rheumatol 75:134–140. https://doi.org/10.1007/s00393-015-0027-5

    Article  CAS  PubMed  Google Scholar 

  55. Rice GI et al (2018) Reverse-Transcriptase Inhibitors in the Aicardi-Goutieres Syndrome. N Engl J Med 379:2275–2277. https://doi.org/10.1056/NEJMc1810983

    Article  PubMed  Google Scholar 

  56. de Carvalho LM et al (2017) Musculoskeletal disease in MDA5-related type I Interferonopathy: a mendelian mimic of Jaccoud’s Arthropathy. Arthritis Rheumatol 69:2081–2091. https://doi.org/10.1002/art.40179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Feist E, Brehm A, Kallinich T, Kruger E (2017) Clinical aspects and genetics of proteasome-associated autoinflammatory syndromes (PRAAS). Z Rheumatol 76:328–334. https://doi.org/10.1007/s00393-017-0264-x

    Article  CAS  PubMed  Google Scholar 

  58. Lausch E et al (2011) Genetic deficiency of tartrate-resistant acid phosphatase associated with skeletal dysplasia, cerebral calcifications and autoimmunity. Nat Genet 43:132–137. https://doi.org/10.1038/ng.749

    Article  CAS  PubMed  Google Scholar 

  59. Meuwissen ME et al (2016) Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med 213:1163–1174. https://doi.org/10.1084/jem.20151529

    Article  PubMed  PubMed Central  Google Scholar 

  60. Steiner A, Harapas CR, Masters SL, Davidson S (2018) An update on autoinflammatory diseases: relopathies. Curr Rheumatol Rep 20:39. https://doi.org/10.1007/s11926-018-0749-x

    Article  CAS  PubMed  Google Scholar 

  61. Delhase M, Hayakawa M, Chen Y, Karin M (1999) Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science 284:309–313. https://doi.org/10.1126/science.284.5412.309

    Article  CAS  PubMed  Google Scholar 

  62. Li ZW et al (1999) The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med 189:1839–1845. https://doi.org/10.1084/jem.189.11.1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Damgaard RB et al (2016) The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell 166(e1220):1215–1230.e20. https://doi.org/10.1016/j.cell.2016.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Takagi M et al (2017) Haploinsufficiency of TNFAIP3 (A20) by germline mutation is involved in autoimmune lymphoproliferative syndrome. J Allergy Clin Immunol 139:1914–1922. https://doi.org/10.1016/j.jaci.2016.09.038

    Article  CAS  PubMed  Google Scholar 

  65. Boisson B et al (2012) Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL‑1 and LUBAC deficiency. Nat Immunol 13:1178–1186. https://doi.org/10.1038/ni.2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Boisson B et al (2015) Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med 212:939–951. https://doi.org/10.1084/jem.20141130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rose CD et al (2015) Blau syndrome: cross-sectional data from a multicentre study of clinical, radiological and functional outcomes. Rheumatology 54:1008–1016. https://doi.org/10.1093/rheumatology/keu437

    Article  CAS  PubMed  Google Scholar 

  68. Miceli-Richard C et al (2001) CARD15 mutations in Blau syndrome. Nat Genet 29:19–20. https://doi.org/10.1038/ng720

    Article  CAS  PubMed  Google Scholar 

  69. Grom AA (2003) Macrophage activation syndrome and reactive hemophagocytic lymphohistiocytosis: the same entities? Curr Opin Rheumatol 15:587–590. https://doi.org/10.1097/00002281-200309000-00011

    Article  PubMed  Google Scholar 

  70. Filipovich AH, Chandrakasan S (2015) Pathogenesis of Hemophagocytic Lymphohistiocytosis. Hematol Oncol Clin North Am 29:895–902. https://doi.org/10.1016/j.hoc.2015.06.007

    Article  PubMed  Google Scholar 

  71. Canna SW et al (2014) An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46:1140–1146. https://doi.org/10.1038/ng.3089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Duncan JA, Canna SW (2018) The NLRC4 Inflammasome. Immunol Rev 281:115–123. https://doi.org/10.1111/imr.12607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Canna SW et al (2017) Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol 139:1698–1701. https://doi.org/10.1016/j.jaci.2016.10.022

    Article  CAS  PubMed  Google Scholar 

  74. Latour S, Aguilar C (2015) XIAP deficiency syndrome in humans. Semin Cell Dev Biol 39:115–123. https://doi.org/10.1016/j.semcdb.2015.01.015

    Article  CAS  PubMed  Google Scholar 

  75. Shoham NG et al (2003) Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc Natl Acad Sci USA 100:13501–13506. https://doi.org/10.1073/pnas.2135380100

    Article  CAS  PubMed  Google Scholar 

  76. Mistry P et al (2018) Dysregulated neutrophil responses and neutrophil extracellular trap formation and degradation in PAPA syndrome. Ann Rheum Dis 77(8):1825–1833. https://doi.org/10.1136/annrheumdis-2018-213746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Holzinger D et al (2015) Single amino acid charge switch defines clinically distinct proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1)-associated inflammatory diseases. J Allergy Clin Immunol 136:1337–1345. https://doi.org/10.1016/j.jaci.2015.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Navon Elkan P et al (2014) Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med 370:921–931. https://doi.org/10.1056/NEJMoa1307362

    Article  CAS  PubMed  Google Scholar 

  79. Zhou Q et al (2014) Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med 370:911–920. https://doi.org/10.1056/NEJMoa1307361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ombrello AK et al (2019) Treatment strategies for deficiency of adenosine deaminase 2. N Engl J Med 380(9):1582–1584. https://doi.org/10.1056/NEJMc1801927

    Article  PubMed  PubMed Central  Google Scholar 

  81. Meyts I, Aksentijevich I (2018) Deficiency of adenosine deaminase 2 (DADA2): updates on the phenotype, genetics, pathogenesis, and treatment. J Clin Immunol 38:569–578. https://doi.org/10.1007/s10875-018-0525-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Carmona-Rivera C et al (2019) Deficiency of adenosine deaminase 2 triggers adenosine-mediated NETosis and TNF production in patients with DADA2. Blood 134:395–406. https://doi.org/10.1182/blood.2018892752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Glocker EO et al (2010) Infant colitis—it’s in the genes. Lancet 376:1272. https://doi.org/10.1016/S0140-6736(10)61008-2

    Article  PubMed  Google Scholar 

  84. Glocker EO et al (2009) Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med 361:2033–2045. https://doi.org/10.1056/NEJMoa0907206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhou Q et al (2012) A hypermorphic missense mutation in PLCG2, encoding phospholipase Cgamma2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet 91:713–720. https://doi.org/10.1016/j.ajhg.2012.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kallinich.

Ethics declarations

Interessenkonflikt

T. Kallinich, C. Hinze und H. Wittkowski geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

N. Blank, Heidelberg

H.-I. Huppertz, Bremen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallinich, T., Hinze, C. & Wittkowski, H. Klassifikation autoinflammatorischer Erkrankungen anhand pathophysiologischer Mechanismen. Z Rheumatol 79, 624–638 (2020). https://doi.org/10.1007/s00393-020-00794-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-020-00794-3

Schlüsselwörter

Keywords

Navigation