Skip to main content
Log in

Langfassung zur S2e-Leitlinie Gichtarthritis (fachärztlich)

Evidenzbasierte Leitlinie der Deutschen Gesellschaft für Rheumatologie (DGRh)

Full version of the S2e guidelines on gouty arthritis

Evidence-based guidelines of the German Society of Rheumatology (DGRh)

  • Leitlinie
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ACR:

American College of Rheumatology

AE:

Adverse event

AWMF:

Arbeitsgemeinschaft der wissenschaftlich-medizinischen Fachgesellschaften

CCT:

Case-control-study

CKD:

chronic kidney disease

CPP:

Calciumpyrophosphat

CPPD:

Kalziumpyrophosphat Erkrankung

CV:

Kardiovaskulär

DECT:

Dual-Energy-Computertomographie

DM:

Diabetes mellitus

EULAR:

European League Against Rheumatism

GFR:

Glomeruläre Filtrationsrate

GMP:

glycomacropeptide

HI:

Herzinsuffizienz

HR:

Hazard Ratio

HRQoL:

Health-related quality of life

i.a.:

Intraartikulär

i.m.:

Intramuskulär

i.v.:

Intravenös

KHK:

Koronare Herzerkrankung

KKP:

Klinischer Konsenspunkt

MACE:

Major Adverse Cardiac Events

MCP:

Metacarpophalangeal

MI:

Myokardinfarkt

MTP:

Metatarsophalangeal

NHANES:

National Health and Nutrition Examination Surveys

NNTB:

Number needed to treat for an additional beneficial outcome

NNTH:

Number needed to treat for an additional harmful outcome

NOX:

NADPH oxidase Aktivität

NSAR:

Nichtsteroidale Antirheumatika

OLT:

Open label trial

OR:

Odds Ratio

PsA:

Psoriasisarthritis

RA:

rheumatoide Arthritis

RF:

Rheumafaktor

RR:

Relatives Risiko

SAE:

Severe adverse event

SD:

Standard deviation

TJC:

Tender joint count

Literatur

  1. Richette P, Bardin T (2010) Gout. Lancet 375(9711):318–328

    Article  CAS  PubMed  Google Scholar 

  2. Choi HK et al (2005) Pathogenesis of gout. Ann Intern Med 143(7):499–516

    Article  CAS  PubMed  Google Scholar 

  3. Neogi T (2011) Clinical practice. Gout. N Engl J Med 364(5):443–452

    Article  CAS  PubMed  Google Scholar 

  4. Kuo CF et al (2014) Rising burden of gout in the UK but continuing suboptimal management: A nationwide population study. Ann Rheum Dis 74(4):661–667

    Article  PubMed  PubMed Central  Google Scholar 

  5. Roddy E, Doherty M (2010) Epidemiology of gout. Arthritis Res Ther 12(6):223

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kuo CF et al (2015) Global epidemiology of gout: Prevalence, incidence and risk factors. Nat Rev Rheumatol 11(11):649–662

    Article  PubMed  Google Scholar 

  7. Mikuls TR et al (2005) Gout epidemiology: Results from the UK General Practice Research Database, 1990–1999. Ann Rheum Dis 64(2):267–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wallace KL et al (2004) Increasing prevalence of gout and hyperuricemia over 10 years among older adults in a managed care population. J Rheumatol 31(8):1582–1587

    PubMed  Google Scholar 

  9. Annemans L et al (2008) Gout in the UK and Germany: Prevalence, comorbidities and management in general practice 2000–2005. Ann Rheum Dis 67(7):960–966

    Article  CAS  PubMed  Google Scholar 

  10. Jing J et al (2014) Prevalence and correlates of gout in a large cohort of patients with chronic kidney disease: The German Chronic Kidney Disease (GCKD) study. Nephrol Dial Transplant. doi:10.1093/ndt/gfu352

    PubMed  Google Scholar 

  11. Zhu Y, Pandya BJ, Choi HK (2012) Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007–2008. Am J Med 125(7):679–687.e1

    Article  PubMed  Google Scholar 

  12. Campion EW, Glynn RJ, DeLabry LO (1987) Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study. Am J Med 82(3):421–426

    Article  CAS  PubMed  Google Scholar 

  13. Zöllner N (1959) Gicht. Dtsch Med Wochenschr 84:920

    Article  PubMed  Google Scholar 

  14. Bomalaski JS, Lluberas G, Schumacher HR Jr. (1986) Monosodium urate crystals in the knee joints of patients with asymptomatic nontophaceous gout. Arthritis Rheum 29(12):1480–1484

    Article  CAS  PubMed  Google Scholar 

  15. Dalbeth N, Stamp L (2014) Hyperuricaemia and gout: Time for a new staging system? Ann Rheum Dis 73(9):1598–1600

    Article  PubMed  Google Scholar 

  16. Gutman AB (1973) The past four decades of progress in the knowledge of gout, with an assessment of the present status. Arthritis Rheum 16(4):431–445

    Article  CAS  PubMed  Google Scholar 

  17. Khanna PP et al (2012) Tophi and frequent gout flares are associated with impairments to quality of life, productivity, and increased healthcare resource use: Results from a cross-sectional survey. Health Qual Life Outcomes 10:117

    Article  PubMed  PubMed Central  Google Scholar 

  18. Scire CA et al (2013) Gout impacts on function and health-related quality of life beyond associated risk factors and medical conditions: Results from the KING observational study of the Italian Society for Rheumatology (SIR). Arthritis Res Ther 15(5):R101

    Article  PubMed  PubMed Central  Google Scholar 

  19. Doherty M, Bardin T, Pascual E (2007) International survey on the diagnosis and management of gout. Ann Rheum Dis 66(12):1685–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sarawate CA et al (2006) Serum urate levels and gout flares: analysis from managed care data. J Clin Rheumatol 12(2):61–65

    Article  PubMed  Google Scholar 

  21. Shields GE, Beard SM (2015) A systematic review of the economic and humanistic burden of gout. Pharmacoeconomics 33(10):1029–1047

    Article  PubMed  Google Scholar 

  22. Pascual E, Sivera F, Andres M (2011) Synovial fluid analysis for crystals. Curr Opin Rheumatol 23(2):161–169

    PubMed  Google Scholar 

  23. Khanna D et al (2012) American College of Rheumatology guidelines for management of gout. Part 1: Systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res (Hoboken) 64(10):1431–1446

    Article  CAS  Google Scholar 

  24. Sivera F et al (2013) Multinational evidence-based recommendations for the diagnosis and management of gout: Integrating systematic literature review and expert opinion of a broad panel of rheumatologists in the 3e initiative. Ann Rheum Dis. doi:10.1136/annrheumdis-2013-203325

    PubMed  PubMed Central  Google Scholar 

  25. Zhang W et al (2006) EULAR evidence based recommendations for gout. Part I: Diagnosis. Report of a task force of the Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 65(10):1301–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schlesinger N, Norquist JM, Watson DJ (2009) Serum urate during acute gout. J Rheumatol 36(6):1287–1289

    Article  CAS  PubMed  Google Scholar 

  27. Janssens HJ et al (2010) A diagnostic rule for acute gouty arthritis in primary care without joint fluid analysis. Arch Intern Med 170(13):1120–1126

    Article  PubMed  Google Scholar 

  28. Kienhorst LB et al (2015) The validation of a diagnostic rule for gout without joint fluid analysis: A prospective study. Rheumatology (Oxford) 54(4):609–614

    Article  Google Scholar 

  29. Dalbeth N et al (2007) Tophaceous joint disease strongly predicts hand function in patients with gout. Rheumatology (Oxford) 46(12):1804–1807

    Article  CAS  Google Scholar 

  30. Ogdie A et al (2015) Imaging modalities for the classification of gout: Systematic literature review and meta-analysis. Ann Rheum Dis 74(10):1868–1874

    Article  PubMed  Google Scholar 

  31. Chowalloor PV, Keen HI (2013) A systematic review of ultrasonography in gout and asymptomatic hyperuricaemia. Ann Rheum Dis 72(5):638–645

    Article  PubMed  Google Scholar 

  32. Ottaviani S et al (2012) Ultrasonography in gout: A case-control study. Clin Exp Rheumatol 30(4):499–504

    PubMed  Google Scholar 

  33. Naredo E et al (2014) Ultrasound-detected musculoskeletal urate crystal deposition: Which joints and what findings should be assessed for diagnosing gout? Ann Rheum Dis 73(8):1522–1528

    Article  PubMed  Google Scholar 

  34. Choi HK et al (2012) Dual energy CT in gout: A prospective validation study. Ann Rheum Dis 71(9):1466–1471

    Article  PubMed  Google Scholar 

  35. Huppertz A et al (2014) Systemic staging for urate crystal deposits with dual-energy CT and ultrasound in patients with suspected gout. Rheumatol Int 34(6):763–771

    Article  CAS  PubMed  Google Scholar 

  36. Bongartz T et al (2015) Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann Rheum Dis 74(6):1072–1077

    Article  PubMed  Google Scholar 

  37. Melzer R et al (2014) Gout tophus detection – a comparison of dual-energy CT (DECT) and histology. Semin Arthritis Rheum 43(5):662–665

    Article  PubMed  Google Scholar 

  38. Khanna D et al (2012) American College of Rheumatology guidelines for management of gout. Part 2: Therapy and antiinflammatory prophylaxis of acute gouty arthritis. Arthritis Care Res (Hoboken) 64(10):1447–1461

    Article  CAS  Google Scholar 

  39. Sriranganathan MK et al (2014) Interventions for tophi in gout: A Cochrane systematic literature review. J Rheumatol Suppl 92:63–69

    Article  PubMed  Google Scholar 

  40. Khanna PP et al (2014) Treatment of acute gout: A systematic review. Semin Arthritis Rheum 44(1):31–38

    Article  CAS  PubMed  Google Scholar 

  41. van Durme CM et al (2014) Non-steroidal anti-inflammatory drugs for acute gout. Cochrane Database Syst Rev 9:CD010120

    PubMed  Google Scholar 

  42. Rees F, Hui M, Doherty M (2014) Optimizing current treatment of gout. Nat Rev Rheumatol 10(5):271–283

    Article  CAS  PubMed  Google Scholar 

  43. Altman RD et al (1988) Ketoprofen versus indomethacin in patients with acute gouty arthritis: A multicenter, double blind comparative study. J Rheumatol 15(9):1422–1426

    CAS  PubMed  Google Scholar 

  44. Butler RC et al (1985) Double-blind trial of flurbiprofen and phenylbutazone in acute gouty arthritis. Br J Clin Pharmacol 20(5):511–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maccagno A, Di Giorgio E, Romanowicz A (1991) Effectiveness of etodolac (‘Lodine’) compared with naproxen in patients with acute gout. Curr Med Res Opin 12(7):423–429

    Article  CAS  PubMed  Google Scholar 

  46. Rubin BR et al (2004) Efficacy and safety profile of treatment with etoricoxib 120 mg once daily compared with indomethacin 50 mg three times daily in acute gout: A randomized controlled trial. Arthritis Rheum 50(2):598–606

    Article  CAS  PubMed  Google Scholar 

  47. Reardon JA et al (1980) Double-blind trial of feprazone and phenylbutazone in acute gout. Curr Med Res Opin 6(7):445–448

    Article  CAS  PubMed  Google Scholar 

  48. Janssens HJ et al (2008) Use of oral prednisolone or naproxen for the treatment of gout arthritis: A double-blind, randomised equivalence trial. Lancet 371(9627):1854–1860

    Article  CAS  PubMed  Google Scholar 

  49. Li T et al (2013) Etoricoxib versus indometacin in the treatment of Chinese patients with acute gouty arthritis: A randomized double-blind trial. Chin Med J (Engl) 126(10):1867–1871

    CAS  Google Scholar 

  50. Schumacher HR et al (2012) Efficacy and tolerability of celecoxib in the treatment of acute gouty arthritis: A randomized controlled trial. J Rheumatol 39(9):1859–1866

    Article  CAS  PubMed  Google Scholar 

  51. Bolten W, Krüger K, Reiter S (2009) Nichtsteroidale Antirheumatika, aktualisierte Empfehlungen zur Verordnung. Dtsch Ges Für Rheumatol Homepage Dgrh. http://dgrh.de/nsar.html

  52. Terkeltaub RA et al (2010) High versus low dosing of oral colchicine for early acute gout flare: Twenty-four-hour outcome of the first multicenter, randomized, double-blind, placebo-controlled, parallel-group, dose-comparison colchicine study. Arthritis Rheum 62(4):1060–1068

    Article  CAS  PubMed  Google Scholar 

  53. van Echteld I et al (2014) Colchicine for acute gout. Cochrane Database Syst Rev 8:CD006190

    PubMed  Google Scholar 

  54. Schlesinger N et al (2002) Local ice therapy during bouts of acute gouty arthritis. J Rheumatol 29(2):331–334

    PubMed  Google Scholar 

  55. Ahern MJ et al (1987) Does colchicine work? The results of the first controlled study in acute gout. Aust N Z J Med 17(3):301–304

    Article  CAS  PubMed  Google Scholar 

  56. Janssens HJ et al (2008) Systemic corticosteroids for acute gout. Cochrane Database Syst Rev 2:CD005521

    PubMed  Google Scholar 

  57. Wechalekar MD et al (2013) Intra-articular glucocorticoids for acute gout. Cochrane Database Syst Rev 4:CD009920

    PubMed  Google Scholar 

  58. Fernandez C et al (1999) Treatment of acute attacks of gout with a small dose of intraarticular triamcinolone acetonide. J Rheumatol 26(10):2285–2286

    CAS  PubMed  Google Scholar 

  59. Komatsu T (1969) Treatment of acute gouty attack with local infiltration of Kenacort – A and the study of gout and hyperuricemia at the Tanabe National Hospital during 1967. Iryo 23(1):54–61

    CAS  PubMed  Google Scholar 

  60. Schlesinger N et al (2012) Canakinumab for acute gouty arthritis in patients with limited treatment options: Results from two randomised, multicentre, active-controlled, double-blind trials and their initial extensions. Ann Rheum Dis 71(11):1839–1848

    Article  CAS  PubMed  Google Scholar 

  61. Schlesinger N et al (2011) Canakinumab relieves symptoms of acute flares and improves health-related quality of life in patients with difficult-to-treat Gouty Arthritis by suppressing inflammation: Results of a randomized, dose-ranging study. Arthritis Res Ther 13(2):R53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. So A et al (2010) Canakinumab for the treatment of acute flares in difficult-to-treat gouty arthritis: Results of a multicenter, phase II, dose-ranging study. Arthritis Rheum 62(10):3064–3076

    Article  CAS  PubMed  Google Scholar 

  63. Schlesinger N et al (2011) Canakinumab reduces the risk of acute gouty arthritis flares during initiation of allopurinol treatment: Results of a double-blind, randomised study. Ann Rheum Dis 70(7):1264–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mitha E et al (2013) Rilonacept for gout flare prevention during initiation of uric acid-lowering therapy: Results from the PRESURGE-2 international, phase 3, randomized, placebo-controlled trial. Rheumatology (Oxford) 52(7):1285–1292

    Article  CAS  Google Scholar 

  65. Schumacher HR Jr. et al (2012) Rilonacept (interleukin-1 trap) in the prevention of acute gout flares during initiation of urate-lowering therapy: Results of a phase II randomized, double-blind, placebo-controlled trial. Arthritis Rheum 64(3):876–884

    Article  CAS  PubMed  Google Scholar 

  66. Terkeltaub RA et al (2013) Rilonacept in the treatment of acute gouty arthritis: A randomized, controlled clinical trial using indomethacin as the active comparator. Arthritis Res Ther 15(1):R25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schumacher HR Jr. et al (2012) Rilonacept (interleukin-1 trap) for prevention of gout flares during initiation of uric acid-lowering therapy: Results from a phase III randomized, double-blind, placebo-controlled, confirmatory efficacy study. Arthritis Care Res (Hoboken) 64(10):1462–1470

    Article  CAS  Google Scholar 

  68. So A et al (2007) A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther 9(2):R28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Thueringer JT, Doll NK, Gertner E (2015) Anakinra for the treatment of acute severe gout in critically ill patients. Semin Arthritis Rheum 45(1):81–85

    Article  CAS  PubMed  Google Scholar 

  70. Tran AP, Edelman J (2011) Interleukin-1 inhibition by anakinra in refractory chronic tophaceous gout. Int J Rheum Dis 14(3):e33–7

    Article  PubMed  Google Scholar 

  71. Richette P et al (2014) Updated Eular evidence-based recommendations for gout. Part II: management. Ann Rheum Dis 2014;73(Suppl2):783

    Google Scholar 

  72. Taylor TH et al (2012) Initiation of allopurinol at first medical contact for acute attacks of gout: A randomized clinical trial. Am J Med 125(11):1126–1134.e7

    Article  CAS  PubMed  Google Scholar 

  73. Shoji A, Yamanaka H, Kamatani N (2004) A retrospective study of the relationship between serum urate level and recurrent attacks of gouty arthritis: Evidence for reduction of recurrent gouty arthritis with antihyperuricemic therapy. Arthritis Rheum 51(3):321–325

    Article  CAS  PubMed  Google Scholar 

  74. Pascual E, Sivera F (2007) Time required for disappearance of urate crystals from synovial fluid after successful hypouricaemic treatment relates to the duration of gout. Ann Rheum Dis 66(8):1056–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Perez-Ruiz F et al (2002) Effect of urate-lowering therapy on the velocity of size reduction of tophi in chronic gout. Arthritis Rheum 47(4):356–360

    Article  CAS  PubMed  Google Scholar 

  76. Andres M et al (2014) Treatment target and followup measures for patients with gout: A systematic literature review. J Rheumatol Suppl 92:55–62

    Article  CAS  PubMed  Google Scholar 

  77. Rees F, Jenkins W, Doherty M (2013) Patients with gout adhere to curative treatment if informed appropriately: Proof-of-concept observational study. Ann Rheum Dis 72(6):826–830

    Article  PubMed  Google Scholar 

  78. Kuo CF et al (2014) Eligibility for and prescription of urate-lowering treatment in patients with incident gout in England. JAMA 312(24):2684–2686

    Article  PubMed  Google Scholar 

  79. Briesacher BA et al (2008) Comparison of drug adherence rates among patients with seven different medical conditions. Pharmacotherapy 28(4):437–443

    Article  PubMed  PubMed Central  Google Scholar 

  80. Harrold LR et al (2009) Adherence with urate-lowering therapies for the treatment of gout. Arthritis Res Ther 11(2):R46

    Article  PubMed  PubMed Central  Google Scholar 

  81. Perez-Ruiz F, Herrero-Beites AM, Carmona L (2011) A two-stage approach to the treatment of hyperuricemia in gout: The “dirty dish” hypothesis. Arthritis Rheum 63(12):4002–4006

    Article  CAS  PubMed  Google Scholar 

  82. Tausche AK et al (2014) As compared to allopurinol, urate-lowering therapy with febuxostat has superior effects on oxidative stress and pulse wave velocity in patients with severe chronic tophaceous gout. Rheumatol Int 34(1):101–109

    Article  CAS  PubMed  Google Scholar 

  83. Seth R et al (2014) Allopurinol for chronic gout. Cochrane Database Syst Rev 10:CD006077

    PubMed  Google Scholar 

  84. Stamp LK et al (2012) Starting dose is a risk factor for allopurinol hypersensitivity syndrome: A proposed safe starting dose of allopurinol. Arthritis Rheum 64(8):2529–2536

    Article  CAS  PubMed  Google Scholar 

  85. Stamp LK et al (2014) Impaired response or insufficient dosage? Examining the potential causes of “inadequate response” to allopurinol in the treatment of gout. Semin Arthritis Rheum 44(2):170–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stamp LK et al (2011) Using allopurinol above the dose based on creatinine clearance is effective and safe in patients with chronic gout, including those with renal impairment. Arthritis Rheum 63(2):412–421

    Article  CAS  PubMed  Google Scholar 

  87. Ramasamy SN et al (2013) Allopurinol hypersensitivity: A systematic review of all published cases, 1950–2012. Drug Saf 36(10):953–980

    Article  CAS  PubMed  Google Scholar 

  88. Kim SC et al (2013) Severe cutaneous reactions requiring hospitalization in allopurinol initiators: A population-based cohort study. Arthritis Care Res (Hoboken) 65(4):578–584

    Article  CAS  Google Scholar 

  89. Halevy S et al (2008) Allopurinol is the most common cause of Stevens-Johnson syndrome and toxic epidermal necrolysis in Europe and Israel. J Am Acad Dermatol 58(1):25–32

    Article  PubMed  Google Scholar 

  90. Hershfield MS et al (2013) Clinical Pharmacogenetics Implementation Consortium guidelines for human leukocyte antigen-B genotype and allopurinol dosing. Clin Pharmacol Ther 93(2):153–158

    Article  CAS  PubMed  Google Scholar 

  91. Becker MA et al (2005) Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N Engl J Med 353(23):2450–2461

    Article  CAS  PubMed  Google Scholar 

  92. Schumacher HR Jr. et al (2008) Effects of febuxostat versus allopurinol and placebo in reducing serum urate in subjects with hyperuricemia and gout: A 28-week, phase III, randomized, double-blind, parallel-group trial. Arthritis Rheum 59(11):1540–1548

    Article  CAS  PubMed  Google Scholar 

  93. Becker MA et al (2010) The urate-lowering efficacy and safety of febuxostat in the treatment of the hyperuricemia of gout: The CONFIRMS trial. Arthritis Res Ther 12(2):R63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Abeles AM (2012) Febuxostat hypersensitivity. J Rheumatol 39(3):659

    Article  PubMed  Google Scholar 

  95. Chohan S (2011) Safety and efficacy of febuxostat treatment in subjects with gout and severe allopurinol adverse reactions. J Rheumatol 38(9):1957–1959

    Article  CAS  PubMed  Google Scholar 

  96. Tayar JH, Lopez-Olivo MA, Suarez-Almazor ME (2012) Febuxostat for treating chronic gout. Cochrane Database Syst Rev 11:CD008653

    PubMed  PubMed Central  Google Scholar 

  97. Ye P et al (2013) Efficacy and tolerability of febuxostat in hyperuricemic patients with or without gout: A systematic review and meta-analysis. Clin Ther 35(2):180–189

    Article  CAS  PubMed  Google Scholar 

  98. Grewal HK, Martinez JR, Espinoza LR (2014) Febuxostat: drug review and update. Expert Opin Drug Metab Toxicol 10(5):747–758

    Article  CAS  PubMed  Google Scholar 

  99. Jansen TL et al (2010) International position paper on febuxostat. Clin Rheumatol 29(8):835–840

    Article  PubMed  Google Scholar 

  100. Faruque LI et al (2013) A systematic review and meta-analysis on the safety and efficacy of febuxostat versus allopurinol in chronic gout. Semin Arthritis Rheum 43(3):367–375

    Article  CAS  PubMed  Google Scholar 

  101. Gregoriano C et al (2014) Acute thiopurine overdose: analysis of reports to a National Poison Centre 1995–2013. PLoS ONE 9(1):e86390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Reinders MK et al (2009) A randomised controlled trial on the efficacy and tolerability with dose escalation of allopurinol 300–600 mg/day versus benzbromarone 100–200 mg/day in patients with gout. Ann Rheum Dis 68(6):892–897

    Article  CAS  PubMed  Google Scholar 

  103. Kydd AS et al (2014) Uricosuric medications for chronic gout. Cochrane Database Syst Rev 11:CD010457

    PubMed  Google Scholar 

  104. Okuda C et al (2011) Serum CRP in patients with gout and effects of benzbromarone. Int J Clin Pharmacol Ther 49(3):191–197

    Article  CAS  PubMed  Google Scholar 

  105. Johnson RJ et al (2005) Uric acid, evolution and primitive cultures. Semin Nephrol 25(1):3–8

    Article  CAS  PubMed  Google Scholar 

  106. Anderson A, Singh JA (2010) Pegloticase for chronic gout. Cochrane Database Syst Rev 3:CD008335

    PubMed  Google Scholar 

  107. Strand V et al (2012) Improved health-related quality of life and physical function in patients with refractory chronic gout following treatment with pegloticase: Evidence from phase III randomized controlled trials. J Rheumatol 39(7):1450–1457

    Article  CAS  PubMed  Google Scholar 

  108. Sundy JS et al (2011) Efficacy and tolerability of pegloticase for the treatment of chronic gout in patients refractory to conventional treatment: Two randomized controlled trials. JAMA 306(7):711–720

    Article  CAS  PubMed  Google Scholar 

  109. Lee YH, Lee CH, Lee J (2006) Effect of fenofibrate in combination with urate lowering agents in patients with gout. Korean J Intern Med 21(2):89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Saar J, Kirch W (2014) A new application for well-known pharmaceutics – losartan and fenofibrate as potential remedies against gout? Dtsch Med Wochenschr 139(12):608

    Article  PubMed  Google Scholar 

  111. Hosoya T et al (2012) Effects of combined antihypertensive therapy with losartan/hydrochlorothiazide on uric acid metabolism. Intern Med 51(18):2509–2514

    Article  CAS  PubMed  Google Scholar 

  112. Miao Y et al (2011) Effect of a reduction in uric acid on renal outcomes during losartan treatment: A post hoc analysis of the reduction of endpoints in non-insulin-dependent diabetes mellitus with the Angiotensin II Antagonist Losartan Trial. Hypertension 58(1):2–7

    Article  CAS  PubMed  Google Scholar 

  113. McGill NW (2000) Gout and other crystal-associated arthropathies. Baillieres Best Pract Res Clin Rheumatol 14(3):445–460

    Article  CAS  PubMed  Google Scholar 

  114. Rothenbacher D et al (2011) Frequency and risk factors of gout flares in a large population-based cohort of incident gout. Rheumatology (Oxford) 50(5):973–981

    Article  Google Scholar 

  115. Wortmann RL et al (2010) Effect of prophylaxis on gout flares after the initiation of urate-lowering therapy: analysis of data from three phase III trials. Clin Ther 32(14):2386–2397

    Article  CAS  PubMed  Google Scholar 

  116. Dalbeth N et al (2014) Zoledronate for prevention of bone erosion in tophaceous gout: A randomised, double-blind, placebo-controlled trial. Ann Rheum Dis 73(6):1044–1051

    Article  CAS  PubMed  Google Scholar 

  117. Becker MA et al (2009) Clinical efficacy and safety of successful longterm urate lowering with febuxostat or allopurinol in subjects with gout. J Rheumatol 36(6):1273–1282

    Article  CAS  PubMed  Google Scholar 

  118. Kramer HM, Curhan G (2002) The association between gout and nephrolithiasis: The National Health and Nutrition Examination Survey III, 1988–1994. Am J Kidney Dis 40(1):37–42

    Article  PubMed  Google Scholar 

  119. Krishnan E (2012) Reduced glomerular function and prevalence of gout: NHANES 2009–10. PLoS ONE 7(11):e50046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Krishnan E (2013) Chronic kidney disease and the risk of incident gout among middle-aged men: A seven-year prospective observational study. Arthritis Rheum 65(12):3271–3278

    Article  PubMed  Google Scholar 

  121. Jalal DI et al (2013) Uric acid as a target of therapy in CKD. Am J Kidney Dis 61(1):134–146

    Article  CAS  PubMed  Google Scholar 

  122. Liu WC et al (2012) Association of hyperuricemia with renal outcomes, cardiovascular disease, and mortality. Clin J Am Soc Nephrol 7(4):541–548

    Article  CAS  PubMed  Google Scholar 

  123. Chang HY et al (2010) Hyperuricemia as an independent risk factor of chronic kidney disease in middle-aged and elderly population. Am J Med Sci 339(6):509–515

    Article  PubMed  Google Scholar 

  124. Obermayr RP et al (2008) Elevated uric acid increases the risk for kidney disease. J Am Soc Nephrol 19(12):2407–2413

    Article  PubMed  PubMed Central  Google Scholar 

  125. Whelton A et al (2011) Renal function in gout: Long-term treatment effects of febuxostat. J Clin Rheumatol 17(1):7–13

    Article  PubMed  Google Scholar 

  126. Sedaghat S et al (2013) Serum uric acid and chronic kidney disease: The role of hypertension. PLoS ONE 8(e76827):11

    Google Scholar 

  127. Chang HY et al (2013) Hyperuricemia is an independent risk factor for new onset micro-albuminuria in a middle-aged and elderly population: A prospective cohort study in taiwan. PLoS ONE 8(4):e61450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Levy GD et al (2014) Effect of urate-lowering therapies on renal disease progression in patients with hyperuricemia. J Rheumatol 41(5):955–962

    Article  PubMed  Google Scholar 

  129. Siu YP et al (2006) Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis 47(1):51–59

    Article  CAS  PubMed  Google Scholar 

  130. Goicoechea M et al (2010) Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol 5(8):1388–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sircar D et al (2015) Efficacy of Febuxostat for slowing the GFR decline in patients with CKD and asymptomatic Hyperuricemia: A 6‑month, double-blind, randomized, placebo-controlled trial. Am J Kidney Dis. doi:10.1053/j.ajkd.2015.05.017

    PubMed  Google Scholar 

  132. Feig DI, Soletsky B, Johnson RJ (2008) Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: A randomized trial. JAMA 300(8):924–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang W et al (2006) EULAR evidence based recommendations for gout. Part II: Management. Report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 65(10):1312–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Choi HK et al (2004) Alcohol intake and risk of incident gout in men: A prospective study. Lancet 363(9417):1277–1281

    Article  PubMed  Google Scholar 

  135. Dalbeth N, Gow P (2006) Alcohol excess may be overemphasised in gout treated in secondary care. N Z Med J 119(1243):U2270

    PubMed  Google Scholar 

  136. Choi JW et al (2008) Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: The Third National Health and Nutrition Examination Survey. Arthritis Rheum 59(1):109–116

    Article  CAS  PubMed  Google Scholar 

  137. Choi HK et al (2005) Obesity, weight change, hypertension, diuretic use, and risk of gout in men: The health professionals follow-up study. Arch Intern Med 165(7):742–748

    Article  PubMed  Google Scholar 

  138. Singh JA, Reddy SG, Kundukulam J (2011) Risk factors for gout and prevention: A systematic review of the literature. Curr Opin Rheumatol 23(2):192–202

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang M et al (2013) A meta-analysis of alcohol consumption and the risk of gout. Clin Rheumatol 32(11):1641–1648

    Article  PubMed  Google Scholar 

  140. Andres M et al (2014) Dietary supplements for chronic gout. Cochrane Database Syst Rev 10:CD010156

    PubMed  Google Scholar 

  141. Moi JH et al (2013) Lifestyle interventions for chronic gout. Cochrane Database Syst Rev 5:CD010039

    PubMed  Google Scholar 

  142. Stamp LK et al (2013) Clinically insignificant effect of supplemental vitamin C on serum urate in patients with gout: A pilot randomized controlled trial. Arthritis Rheum 65(6):1636–1642

    Article  CAS  PubMed  Google Scholar 

  143. Dalbeth N et al (2012) Effects of skim milk powder enriched with glycomacropeptide and G600 milk fat extract on frequency of gout flares: A proof-of-concept randomised controlled trial. Ann Rheum Dis 71(6):929–934

    Article  CAS  PubMed  Google Scholar 

  144. Wang W, Krishnan E (2015) Cigarette smoking is associated with a reduction in the risk of incident gout: results from the Framingham Heart Study original cohort. Rheumatology (Oxford) 54(1):91–95

    Article  Google Scholar 

  145. Choi HK, Curhan G (2007) Independent impact of gout on mortality and risk for coronary heart disease. Circulation 116(8):894–900

    Article  PubMed  Google Scholar 

  146. Riedel AA et al (2004) Prevalence of comorbid conditions and prescription medication use among patients with gout and hyperuricemia in a managed care setting. J Clin Rheumatol 10(6):308–314

    Article  PubMed  Google Scholar 

  147. Kuo CF et al (2014) Comorbidities in patients with gout prior to and following diagnosis: Case-control study. Ann Rheum Dis. doi:10.1136/annrheumdis-2014-206410

    Google Scholar 

  148. Roddy E et al (2013) The association of gout with sleep disorders: A cross-sectional study in primary care. Bmc Musculoskelet Disord 14:119

    Article  PubMed  PubMed Central  Google Scholar 

  149. Kuo CF et al (2012) Increased risk of cancer among gout patients: A nationwide population study. Joint Bone Spine 79(4):375–378

    Article  PubMed  Google Scholar 

  150. Savarese G et al (2013) Changes in serum uric acid levels and cardiovascular events: A meta-analysis. Nutr Metab Cardiovasc Dis 23(8):707–714

    Article  CAS  PubMed  Google Scholar 

  151. Lottmann K, Chen X, Schadlich PK (2012) Association between gout and all-cause as well as cardiovascular mortality: A systematic review. Curr Rheumatol Rep 14(2):195–203

    Article  PubMed  PubMed Central  Google Scholar 

  152. Dutta A et al (2013) Uric acid measurement improves prediction of cardiovascular mortality in later life. J Am Geriatr Soc 61(3):319–326

    Article  PubMed  Google Scholar 

  153. Stack AG et al (2013) Independent and conjoint associations of gout and hyperuricaemia with total and cardiovascular mortality. QJM 106(7):647–658

    Article  CAS  PubMed  Google Scholar 

  154. Kuo CF et al (2010) Gout: An independent risk factor for all-cause and cardiovascular mortality. Rheumatology (Oxford) 49(1):141–146

    Article  Google Scholar 

  155. Teng GG et al (2012) Mortality due to coronary heart disease and kidney disease among middle-aged and elderly men and women with gout in the Singapore Chinese Health Study. Ann Rheum Dis 71(6):924–928

    Article  PubMed  Google Scholar 

  156. Krishnan E et al (2011) Hyperuricemia and the risk for subclinical coronary atherosclerosis – data from a prospective observational cohort study. Arthritis Res Ther 13(2):R66

    Article  PubMed  PubMed Central  Google Scholar 

  157. Kim SY et al (2010) Hyperuricemia and coronary heart disease: A systematic review and meta-analysis. Arthritis Care Res (Hoboken) 62(2):170–180

    Google Scholar 

  158. Trkulja V, Car S (2012) On-admission serum uric acid predicts outcomes after acute myocardial infarction: Systematic review and meta-analysis of prognostic studies. Croat Med J 53(2):162–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. De Vera MA et al (2010) Independent impact of gout on the risk of acute myocardial infarction among elderly women: A population-based study. Ann Rheum Dis 69(6):1162–1164

    Article  PubMed  PubMed Central  Google Scholar 

  160. Li M et al (2014) Hyperuricemia and risk of stroke: A systematic review and meta-analysis of prospective studies. Atherosclerosis 232(2):265–270

    Article  CAS  PubMed  Google Scholar 

  161. Nyrnes A et al (2014) Uric acid is associated with future atrial fibrillation: An 11-year follow-up of 6308 men and women – the Tromso Study. Europace 16(3):320–326

    Article  PubMed  Google Scholar 

  162. Grayson PC et al (2011) Hyperuricemia and incident hypertension: A systematic review and meta-analysis. Arthritis Care Res (Hoboken) 63(1):102–110

    Article  CAS  Google Scholar 

  163. Huang H et al (2014) Uric acid and risk of heart failure: A systematic review and meta-analysis. Eur J Heart Fail 16(1):15–24

    Article  CAS  PubMed  Google Scholar 

  164. Tamariz L et al (2011) Uric acid as a predictor of all-cause mortality in heart failure: A meta-analysis. Congest Heart Fail 17(1):25–30

    Article  PubMed  Google Scholar 

  165. Wu AH et al (2010) Uric acid level and allopurinol use as risk markers of mortality and morbidity in systolic heart failure. Am Heart J 160(5):928–933

    Article  CAS  PubMed  Google Scholar 

  166. Krishnan E (2012) Gout and the risk for incident heart failure and systolic dysfunction. BMJ Open 2(1):e000282

    Article  PubMed  PubMed Central  Google Scholar 

  167. Hamaguchi S et al (2011) Hyperuricemia predicts adverse outcomes in patients with heart failure. Int J Cardiol 151(2):143–147

    Article  PubMed  Google Scholar 

  168. Hueskes BA et al (2012) A case–control study of determinants for the occurrence of gouty arthritis in heart failure patients. Eur J Heart Fail 14(8):916–921

    Article  CAS  PubMed  Google Scholar 

  169. Jia Z et al (2013) Serum uric acid levels and incidence of impaired fasting glucose and type 2 diabetes mellitus: A meta-analysis of cohort studies. Diabetes Res Clin Pract 101(1):88–96

    Article  CAS  PubMed  Google Scholar 

  170. Xu Y et al (2013) Hyperuricemia as an independent predictor of vascular complications and mortality in type 2 diabetes patients: A meta-analysis. PLoS ONE 8(10):e78206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lv Q et al (2013) High serum uric acid and increased risk of type 2 diabetes: A systemic review and meta-analysis of prospective cohort studies. PLoS ONE 8(2):e56864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rho YH et al (2014) Independent impact of gout on the risk of diabetes mellitus among women and men: A population-based, BMI-matched cohort study. Ann Rheum Dis. doi:10.1136/annrheumdis-2014-205827

    Google Scholar 

  173. Rodriguez G, Soriano LC, Choi HK (2010) Impact of diabetes against the future risk of developing gout. Ann Rheum Dis 69(12):2090–2094

    Article  PubMed  Google Scholar 

  174. Chen JH et al (2013) Impact of obesity and hypertriglyceridemia on gout development with or without hyperuricemia: a prospective study. Arthritis Care Res (Hoboken) 65(1):133–140

    Article  Google Scholar 

  175. Hueskes BA et al (2012) Use of diuretics and the risk of gouty arthritis: A systematic review. Semin Arthritis Rheum 41(6):879–889

    Article  CAS  PubMed  Google Scholar 

  176. McAdams-DeMarco MA et al (2012) Diuretic use, increased serum urate levels, and risk of incident gout in a population-based study of adults with hypertension: The Atherosclerosis Risk in Communities cohort study. Arthritis Rheum 64(1):121–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang Y et al (2014) Low-dose aspirin use and recurrent gout attacks. Ann Rheum Dis 73(2):385–390

    Article  CAS  PubMed  Google Scholar 

  178. Spencer K, Carr A, Doherty M (2012) Patient and provider barriers to effective management of gout in general practice: A qualitative study. Ann Rheum Dis 71(9):1490–1495

    Article  PubMed  Google Scholar 

  179. Solomon DH et al (2008) Uric acid lowering therapy: Prescribing patterns in a large cohort of older adults. Ann Rheum Dis 67(5):609–613

    Article  CAS  PubMed  Google Scholar 

  180. Reach G (2011) Treatment adherence in patients with gout. Joint Bone Spine 78(5):456–459

    Article  PubMed  Google Scholar 

  181. Rashid N et al (2015) Modifiable factors associated with allopurinol adherence and outcomes among patients with gout in an integrated healthcare system. J Rheumatol 42(3):504–512

    Article  PubMed  Google Scholar 

  182. Sarawate CA et al (2006) Gout medication treatment patterns and adherence to standards of care from a managed care perspective. Mayo Clin Proc 81(7):925–934

    Article  PubMed  Google Scholar 

  183. Dalbeth N et al (2012) Prescription and dosing of urate-lowering therapy, rather than patient behaviours, are the key modifiable factors associated with targeting serum urate in gout. Bmc Musculoskelet Disord 13:174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Roddy E et al (2010) Prescription and comorbidity screening following consultation for acute gout in primary care. Rheumatology (Oxford) 49(1):105–111

    Article  Google Scholar 

  185. Kuo CF et al (2013) Risk of myocardial infarction among patients with gout: A nationwide population-based study. Rheumatology (Oxford) 52(1):111–117

    Article  Google Scholar 

  186. Neogi T et al (2015) Ann Rheum Dis / Arthritis Rheumatol 67(10):2557–2568

    Article  Google Scholar 

Download references

Danksagung

Unser herzlichster Dank geht an Frau C. Flader und Herrn T. Schreiber für die Unterstützung bei der Literaturrecherche, an Frau J. Patermann für die Erstellung der Evidenztabellen sowie an Frau Flörecke für die redaktionelle Unterstützung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Kiltz.

Ethics declarations

Interessenkonflikt

Die Angaben zum Interessenskonflikt aller Leitlinienautoren finden sich im Leitlinienreport http://www.awmf.org/leitlinien/detail/ll/060-005.html

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Copyright

Die Urheberrechte für alle hier veröffentlichten Texte liegen bei den Autoren, die Verwertungsrechte bei den angegebenen Fachgesellschaften, Autoren oder Autorengruppen (natürliche oder juristische Personen). Mit der Einreichung der Leitlinien durch die Autoren bzw. Fachgesellschaften bei der AWMF wird dieser automatisch das Recht eingeräumt, die Texte im elektronischen Medium World Wide Web des Internet zu präsentieren. Das Leitlinien-Informationssystem der AWMF selbst ist als Datenbankwerk gemäß § 4 UrhG gesondert geschützt. Die vorliegenden Texte dürfen ausschließlich für den persönlichen Gebrauch (gemäß § 53 UrhG) in einer EDV-Anlage gespeichert und (in inhaltlich unveränderter Form) ausgedruckt werden. Jede darüber hinausgehende, insbesondere kommerzielle, Verwertung bedarf der schriftlichen Zustimmung der angegebenen Urheber und/oder Inhaber von Verwertungsrechten.

Es ist ausdrücklich untersagt, ohne schriftliche Zustimmung der Urheber Kopien dieser Texte oder von Teilen daraus an anderer Stelle öffentlich zu präsentieren (z. B. durch „Spiegeln“ dieser Seiten auf anderen WWW-Servern) oder diese inhaltlich zu verändern. Verweise („links“) aus anderen Dokumenten des World Wide Web auf die Dokumente in „AWMF online“ sind dagegen ohne Weiteres zulässig und erwünscht, für eine entsprechende Mitteilung sind wir jedoch dankbar.

Anhang

Anhang

Evidenztabellen

Tab. 4 Evidenztabelle Metaanalysen und systematische Reviews
Tab. 5 Evidenztabelle für kontrollierte Studien
Tab. 6 Evidenztabelle für Fall-Kontroll-Studien
Tab. 7 Evidenztabelle für Kohortenstudien

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiltz, U., Alten, R., Fleck, M. et al. Langfassung zur S2e-Leitlinie Gichtarthritis (fachärztlich) . Z Rheumatol 75 (Suppl 2), 11–60 (2016). https://doi.org/10.1007/s00393-016-0147-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-016-0147-6

Navigation