Skip to main content
Log in

Entzündung und Knochen

Osteoimmunologische Aspekte

Inflammation and bone

Osteoimmunological aspects

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Mikroskopische Frakturen (sog. „microcracks“) und unfallbedingte makroskopische Frakturen erfordern von Knochen als Grundgerüst des menschlichen Körpers eine hohe Regenerationsfähigkeit. Um diesen Anforderungen genügen zu können, sind sie permanenten Umbau- und Erneuerungsprozessen unterworfen. Ist die Knochenhomöostase jedoch gestört, führt dies zu Osteoporose oder anderen Knochenerkrankungen. Da das Immunsystem wesentlich an der Regulation der Knochenhomöostase beteiligt ist und insbesondere chronische Entzündungen diese aus dem Gleichgewicht bringen können, werden im Rahmen dieses Beitrags die osteoimmunologischen Aspekte beleuchtet, die zur Entstehung von Osteoporose und anderen Erkrankungen, die mit einer Knochendegradation einhergehen, beitragen.

Abstract

Microscopic fractures (so-called microcracks) or traumatic macrofractures require bone, as the basic scaffold of the human body, to have a high regenerative capability. In order to be able to provide this regenerative capability, bone is in a constant process of remodeling. This finely tuned homeostasis of bone formation and degradation can become disrupted, which leads to osteoporosis or other bone disorders. It has been shown that the immune system is substantially involved in the regulation of bone homeostasis and that chronic inflammation in particular can disturb this balance; therefore, this article reviews the osteoimmunological aspects contributing to osteoporosis and other diseases associated with bone degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Axmann R, Herman S, Zaiss M et al (2008) CTLA-4 directly inhibits osteoclast formation. Ann Rheum Dis 67:1603–1609

    Article  CAS  PubMed  Google Scholar 

  2. Chen G, Deng C, Li YP (2012) TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8:272–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cohen SB, Dore RK, Lane NE et al (2008) Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 58:1299–1309

    Article  CAS  PubMed  Google Scholar 

  4. Deodhar AA, Woolf AD (1996) Bone mass measurement and bone metabolism in rheumatoid arthritis: a review. Rheumatology 35:309–322

    Article  CAS  Google Scholar 

  5. Frommer KW, Neumann E, Lange U et al (2014) Adipokine und Knochenstoffwechsel – gibt es einen Link? Aktuelle Rheumatol 36:375–383

    Google Scholar 

  6. Gough A, Sambrook P, Devlin J et al (1998) Osteoclastic activation is the principal mechanism leading to secondary osteoporosis in rheumatoid arthritis. J Rheumatol 25:1282–1289

    CAS  PubMed  Google Scholar 

  7. Harre U, Georgess D, Bang H et al (2012) Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest 122:1791–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jarrett SJ, Conaghan PG, Sloan VS et al (2006) Preliminary evidence for a structural benefit of the new bisphosphonate zoledronic acid in early rheumatoid arthritis. Arthritis Rheum 54:1410–1414

    Article  CAS  PubMed  Google Scholar 

  9. Jimenez-Boj E, Nöbauer-Huhmann I, Hanslik-Schnabel B et al (2007) Bone erosions and bone marrow edema as defined by magnetic resonance imaging reflect true bone marrow inflammation in rheumatoid arthritis. Arthritis Rheum 56:1118–1124

    Article  PubMed  Google Scholar 

  10. Karmakar S, Kay J, Gravallese EM (2010) Bone damage in rheumatoid arthritis: mechanistic insights and approaches to prevention. Rheum Dis Clin North Am 36:385–404

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kotake S, Udagawa N, Takahashi N et al (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kremer JM, Genant HK, Moreland LW et al (2008) Results of a two-year followup study of patients with rheumatoid arthritis who received a combination of abatacept and methotrexate. Arthritis Rheum 58:953–963

    Article  CAS  PubMed  Google Scholar 

  13. Krishnamurthy A, Joshua V, Haj HA et al (2016) Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann Rheum Dis 75:721-729

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kubota T, Michigami T, Ozono K (2009) Wnt signaling in bone metabolism. J Bone Miner Metab 27:265–271

    Article  CAS  PubMed  Google Scholar 

  15. Lewiecki EM (2014) Role of sclerostin in bone and cartilage and its potential as a therapeutic target in bone diseases. Ther Adv Musculoskelet Dis 6:48–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li J, Sarosi I, Cattley RC et al (2006) Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 39:754–766

    Article  CAS  PubMed  Google Scholar 

  17. Mangashetti LS, Khapli SM, Wani MR (2005) IL-4 inhibits bone-resorbing activity of mature osteoclasts by affecting NF-kappa B and Ca2+ signaling. J Immunol 175:917–925

    Article  CAS  PubMed  Google Scholar 

  18. Mirosavljevic D, Quinn JM, Elliott J et al (2003) T‑cells mediate an inhibitory effect of interleukin-4 on osteoclastogenesis. J Bone Miner Res 18:984–993

    Article  CAS  PubMed  Google Scholar 

  19. Morvan F, Boulukos K, Clement-Lacroix P et al (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 21:934–945

    Article  CAS  PubMed  Google Scholar 

  20. Neumann E, Frommer KW, Vasile M et al (2011) Adipocytokines as driving forces in rheumatoid arthritis and related inflammatory diseases? Arthritis Rheum 63:1159–1169

    Article  CAS  PubMed  Google Scholar 

  21. Neumann E, Schett G (2007) Bone metabolism: molecular mechanisms. Z Rheumatol 66:286–289

    Article  CAS  PubMed  Google Scholar 

  22. Sambrook PN, Ansell BM, Foster S et al (1985) Bone turnover in early rheumatoid arthritis. 1. biochemical and kinetic indexes. Ann Rheum Dis 44:575–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sato K, Suematsu A, Okamoto K et al (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203:2673–2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schett G, Kiechl S, Weger S et al (2006) High-sensitivity C‑reactive protein and risk of nontraumatic fractures in the Bruneck study. Arch Intern Med 166:2495–2501

    Article  CAS  PubMed  Google Scholar 

  25. Smolen JS, Avila JC, Aletaha D (2012) Tocilizumab inhibits progression of joint damage in rheumatoid arthritis irrespective of its anti-inflammatory effects: disassociation of the link between inflammation and destruction. Ann Rheum Dis 71:687–693

    Article  CAS  PubMed  Google Scholar 

  26. Smolen JS, Han C, Bala M et al (2005) Evidence of radiographic benefit of treatment with infliximab plus methotrexate in rheumatoid arthritis patients who had no clinical improvement: a detailed subanalysis of data from the anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study. Arthritis Rheum 52:1020–1030

    Article  CAS  PubMed  Google Scholar 

  27. Smolen JS, Han C, Heijde DM van der et al (2009) Radiographic changes in rheumatoid arthritis patients attaining different disease activity states with methotrexate monotherapy and infliximab plus methotrexate: the impacts of remission and tumour necrosis factor blockade. Ann Rheum Dis 68:823–827

    Article  CAS  PubMed  Google Scholar 

  28. Will R (1989) Osteoporosis in early ankylosing spondylitis: a primary pathological event? Lancet 334:1483–1485

    Article  Google Scholar 

  29. Zaiss MM, Axmann R, Zwerina J et al (2007) Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum 56:4104–4112

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Q, Chen B, Yan F et al (2014) Interleukin-10 inhibits bone resorption: a potential therapeutic strategy in periodontitis and other bone loss diseases. Biomed Res Int 2014:284836

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. W. Frommer.

Ethics declarations

Interessenkonflikt

K.W. Frommer, E. Neumann und U. Lange geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

U. Lange, Bad Nauheim

G. Schett, Erlangen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frommer, K.W., Neumann, E. & Lange, U. Entzündung und Knochen. Z Rheumatol 75, 444–450 (2016). https://doi.org/10.1007/s00393-016-0101-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-016-0101-7

Schlüsselwörter

Keywords

Navigation