Skip to main content
Log in

Effektor-T-Zellen

Effector T cells

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Unser Verständnis zu den Pathomechanismen und der Ätiologie rheumatischer Entzündungen ist noch sehr unvollständig. Es deutet jedoch viel darauf hin, dass Effektor-T-Zellen, insbesondere CD4+-Effektor-T-Helfer (Th)-Lymphozyten, hier eine zentrale Rolle spielen.

Ergebnisse

In den letzten Jahren wurden mehrere Untergruppen von Effektor-Th-Zellen beschrieben, die über die klassische Einteilung in Th1 und Th2 hinausgeht. Die Th-Subpopulationen wie Th1, Th2, Th9, Th17, Th22 und T-follikuläre Helferzellen (Tfh) unterscheiden sich in ihrer Expression von Zytokinen sowie Transkriptionsfaktoren und können unterschiedliche Funktionen ausüben.

Schlussfolgerung

Die wachsende Erkenntnis, welche Rolle diese unterschiedlichen T-Zell-Typen bei der Entzündung spielen, trägt zu einem besseren Verständnis hinsichtlich Entstehung und Chronifizierung rheumatischer Erkrankungen bei.

Abstract

Background

Although the present understanding of the immunopathogenesis of rheumatoid inflammation is still incomplete, there is substantial evidence that effector CD4+ T helper (Th) cells play a central role.

Results

In recent years, in addition to the established Th cell subsets Th1 and Th2 cells, other subsets, such as Th9, Th17, Th22 and T follicular helper (Tfh) cells have been described. Defining the contribution of T cells in the initiation and maintenance of inflammation has been augmented by the identification of functionally distinct subsets of effector Th cells that can be classified based on their cytokine and transcription factor profiles.

Conclusion

Increasing knowledge of the role of these various T cell populations in chronic inflammation provides a better understanding and insights into the pathogenic mechanisms and chronification of rheumatic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Albrecht I, Niesner U, Janke M et al (2008) The pro-inflammatory immunological memory: twist1 as a marker for chronically activated T lymphocytes. Z Rheumatol 67:684–688

    Article  CAS  PubMed  Google Scholar 

  2. Annunziato F, Cosmi L, Liotta F et al (2008) The phenotype of human Th17 cells and their precursors, the cytokines that mediate their differentiation and the role of Th17 cells in inflammation. Int Immunol 20:1361–1368

    Article  CAS  PubMed  Google Scholar 

  3. Cai L, Yin JP, Starovasnik MA et al (2001) Pathways by which interleukin 17 induces articular cartilage breakdown in vitro and in vivo. Cytokine 16:10–21

    Article  CAS  PubMed  Google Scholar 

  4. Cascao R, Moura RA, Perpetuo I et al (2010) Identification of a cytokine network sustaining neutrophil and Th17 activation in untreated early rheumatoid arthritis. Arthritis Res Ther 12:R196

    Article  PubMed Central  PubMed  Google Scholar 

  5. Chabaud M, Durand JM, Buchs N et al (1999) Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 42:963–970

    Article  CAS  PubMed  Google Scholar 

  6. Chabaud M, Lubberts E, Joosten L et al (2001) IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res 3:168–177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Chang HD, Helbig C, Tykocinski L et al (2007) Expression of IL-10 in Th memory lymphocytes is conditional on IL-12 or IL-4, unless the IL-10 gene is imprinted by GATA-3. Eur J Immunol 37:807–817

    Article  CAS  PubMed  Google Scholar 

  8. Chowdhury K (2014) Th9 cells in synovial fluid of rheumatoid arthritis positively correlate with disease activity. J Clin Cell Immunol 5:160 (Abstract)

    Google Scholar 

  9. Chu CQ, Song Z, Mayton L et al (2003) IFNgamma deficient C57BL/6 (H-2b) mice develop collagen induced arthritis with predominant usage of T cell receptor Vbeta6 and Vbeta8 in arthritic joints. Ann Rheum Dis 62:983–990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Cosmi L, Cimaz R, Maggi L et al (2011) Evidence of the transient nature of the Th17 phenotype of CD4+ CD161+ T cells in the synovial fluid of patients with juvenile idiopathic arthritis. Arthritis Rheum 63:2504–2515

    Article  CAS  PubMed  Google Scholar 

  11. Da Rocha LF Jr, Duarte AL, Dantas AT et al (2012) Increased serum interleukin 22 in patients with rheumatoid arthritis and correlation with disease activity. J Rheumatol 39:1320–1325

    Article  Google Scholar 

  12. Dardalhon V, Awasthi A, Kwon H et al (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat Immunol 9:1347–1355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ehrenstein MR, Evans JG, Singh A et al (2004) Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med 200:277–285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Feuerer M, Eulenburg K, Loddenkemper C et al (2006) Self-limitation of Th1-mediated inflammation by IFN-{gamma}. J Immunol 176:2857–2863

    Article  CAS  PubMed  Google Scholar 

  15. Geboes L, Dumoutier L, Kelchtermans H et al (2009) Proinflammatory role of the Th17 cytokine interleukin-22 in collagen-induced arthritis in C57BL/6 mice. Arthritis Rheum 60:390–395

    Article  CAS  PubMed  Google Scholar 

  16. Harrington LE, Hatton RD, Mangan PR et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    Article  CAS  PubMed  Google Scholar 

  17. Hill NJ, Van Gunst K, Sarvetnick N (2003) Th1 and Th2 pancreatic inflammation differentially affects homing of islet-reactive CD4 cells in nonobese diabetic mice. J Immunol 170:1649–1658

    Article  CAS  PubMed  Google Scholar 

  18. Ikeuchi H, Kuroiwa T, Hiramatsu N et al (2005) Expression of interleukin-22 in rheumatoid arthritis: potential role as a proinflammatory cytokine. Arthritis Rheum 52:1037–1046

    Article  CAS  PubMed  Google Scholar 

  19. Ivanov II, Mckenzie BS, Zhou L et al (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133

    Article  CAS  PubMed  Google Scholar 

  20. Kim KW, Kim HR, Park JY et al (2012) Interleukin-22 promotes osteoclastogenesis in rheumatoid arthritis through induction of RANKL in human synovial fibroblasts. Arthritis Rheum 64:1015–1023

    Article  CAS  PubMed  Google Scholar 

  21. King C, Tangye SG, Mackay CR (2008) T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu Rev Immunol 26:741–766

    Article  CAS  PubMed  Google Scholar 

  22. Kirkham BW, Kavanaugh A, Reich K (2014) Interleukin-17A: a unique pathway in immune-mediated diseases: psoriasis, psoriatic arthritis and rheumatoid arthritis. Immunology 141:133–142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kotake S, Udagawa N, Takahashi N et al (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kremer JM, Westhovens R, Leon M et al (2003) Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med 349:1907–1915

    Article  CAS  PubMed  Google Scholar 

  25. Leipe J, Grunke M, Dechant C et al (2010) Role of Th17 cells in human autoimmune arthritis. Arthritis Rheum 62:2876–2885

    Article  CAS  PubMed  Google Scholar 

  26. Leipe J, Schramm MA, Grunke M et al (2011) Interleukin 22 serum levels are associated with radiographic progression in rheumatoid arthritis. Ann Rheum Dis 70:1453–1457

    Article  CAS  PubMed  Google Scholar 

  27. Leipe J, Skapenko A, Lipsky PE et al (2005) Regulatory T cells in rheumatoid arthritis. Arthritis Res Ther 7:93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Leipe J, Skapenko A, Schulze-Koops H (2009) Th17 cells – a new proinflammatory T cell population and its role in rheumatologic autoimmune diseases. Z Rheumatol 68:405–408

    Article  CAS  PubMed  Google Scholar 

  29. Lexberg MH, Taubner A, Albrecht I et al (2010) IFN-gamma and IL-12 synergize to convert in vivo generated Th17 into Th1/Th17 cells. Eur J Immunol 40:3017–3027

    Article  CAS  PubMed  Google Scholar 

  30. Manel N, Unutmaz D, Littman DR (2008) The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 9:641–649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Marijnissen RJ, Koenders MI, Smeets RL et al (2011) Increased expression of interleukin-22 by synovial Th17 cells during late stages of murine experimental arthritis is controlled by interleukin-1 and enhances bone degradation. Arthritis Rheum 63:2939–2948

    Article  CAS  PubMed  Google Scholar 

  32. Metawi SA, Abbas D, Kamal MM et al (2011) Serum and synovial fluid levels of interleukin-17 in correlation with disease activity in patients with RA. Clin Rheumatol 30:1201–1207

    Article  PubMed  Google Scholar 

  33. Nakae S, Nambu A, Sudo K et al (2003) Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 171:6173–6177

    Article  CAS  PubMed  Google Scholar 

  34. Niesner U, Albrecht I, Janke M et al (2008) Autoregulation of Th1-mediated inflammation by twist1. J Exp Med 205:1889–1901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. O’connor RA, Prendergast CT, Sabatos CA et al (2008) Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 181:3750–3754

    Article  Google Scholar 

  36. Park H, Li Z, Yang XO et al (2005) A distinct lineage of CD4T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Pieper J, Johansson S, Snir O et al (2014) Peripheral and site-specific CD4(+) CD28(null) T cells from rheumatoid arthritis patients show distinct characteristics. Scand J Immunol 79:149–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Prots I, Skapenko A, Wendler J et al (2006) Association of the IL4R single-nucleotide polymorphism I50V with rapidly erosive rheumatoid arthritis. Arthritis Rheum 54:1491–1500

    Article  CAS  PubMed  Google Scholar 

  39. Reinisch W, De Villiers W, Bene L et al (2010) Fontolizumab in moderate to severe Crohn’s disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflamm Bowel Dis 16:233–242

    Article  PubMed  Google Scholar 

  40. Scheel T, Gursche A, Zacher J et al (2011) V-region gene analysis of locally defined synovial B and plasma cells reveals selected B cell expansion and accumulation of plasma cell clones in rheumatoid arthritis. Arthritis Rheum 63:63–72

    Article  CAS  PubMed  Google Scholar 

  41. Schmitt E, Klein M, Bopp T (2014) Th9 cells, new players in adaptive immunity. Trends Immunol 35:61–68

    Article  CAS  PubMed  Google Scholar 

  42. Skapenko A, Leipe J, Niesner U et al (2004) GATA-3 in human T cell helper type 2 development. J Exp Med 199:423–428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Skapenko A, Wendler J, Lipsky PE et al (1999) Altered memory T cell differentiation in patients with early rheumatoid arthritis. J Immunol 163:491–499

    CAS  PubMed  Google Scholar 

  44. Skapenko A, Wendler J, Lipsky PE et al (1999) Altered memory T cell differentiation in patients with early rheumatoid arthritis. J Immunol 163:491–499

    CAS  PubMed  Google Scholar 

  45. Veldhoen M, Uyttenhove C, Van Snick J et al (2008) Transforming growth factor-beta ‚reprograms‘ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9:1341–1346

    Article  CAS  PubMed  Google Scholar 

  46. Yu D, Rao S, Tsai LM et al (2009) The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31:457–468

    Article  CAS  PubMed  Google Scholar 

  47. Zielinski CE (2013) Regulation of proinflammatory and anti-inflammatory Th17 cells. Z Rheumatol 72:457–461

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. J. Leipe und H.-D. Chang geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Leipe.

Additional information

___Finanzielle Unterstützung_____

Jan Leipe erhielt für seine Forschungsarbeiten finanzielle Unterstützung durch die Deutsche Forschungsgemeinschaft (DFG LE 2784/1-1), Deutsche Gesellschaft für Rheumatologie (Start-up Förderung), Medizinische Fakultät der LMU (FöFoLE-Programm) und das Bundesministerium für Bildung und Forschung (IMPAM-Programm, Projekt 10, OIEC 1008H).

Hyun-Dong Chang erhielt für seine Forschungsarbeiten finanzielle Unterstützung durch die Deutsche Forschungsgemeinschaft (SFB650, SFB633 und SPP1468 Immunobone) und das Bundesministerium für Bildung und Forschung (IMPAM Fö-Kz. 01EC1008B und Immunopain Fö-Kz. 01EC1004A).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leipe, J., Chang, HD. Effektor-T-Zellen. Z. Rheumatol. 74, 14–19 (2015). https://doi.org/10.1007/s00393-014-1441-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-014-1441-9

Schlüsselwörter

Keywords

Navigation