Skip to main content
Log in

Nierenersatztherapie: Wann? Wie? Wie lange?

Renal replacement therapy: When? How? How long?

  • Leitthema
  • Published:
Intensivmedizin und Notfallmedizin

Zusammenfassung

Die Einführung kontinuierlicher Verfahren („continuous renal replacement therapy“, CRRT) revolutionierte den Einsatz der Nierenersatztherapie auf den Intensivstationen. Plötzlich waren ausgezeichnete hämodynamische Stabilität, praktisch unlimitierter Flüssigkeitsentzug und jederzeitiger Therapiebeginn möglich. Auch im Hinblick auf die Therapieintensität schienen mit den Geräten der neueren Generation kaum Grenzen nach oben hin gesetzt. Unter diesen Vorraussetzungen zeigten erste kleinere randomisierte Studien um die Jahrtausendwende einen Überlebensvorteil für eine CRRT-Dosis von mindestens 35 ml/kgKG/h bzw. für tägliche intermittierende Hämodialyse. Diese Effekte konnten in nachfolgenden großen multizentrischen Studien nicht bestätigt werden, sodass sich derzeitige Therapieempfehlungen in einem Bereich von 25–30 ml/kgKG/h effektiv verabreichter Dosis bzw. bei 2-tägiger intermittierender Hämodialyse bewegen. Trotz der besseren Verträglichkeit der kontinuierlichen Verfahren konnte bislang in keiner Studie ein Überlebensvorteil gegenüber den intermittierenden Verfahren schlüssig bewiesen werden. Aufgrund des steigenden Kostendrucks erleben modifizierte intermittierende Verfahren wie „sustained low-efficiency dialysis“ (SLED) bei verbesserter hämodynamischer Verträglichkeit eine Renaissance. Die regionale Antikoagulation mit Citrat befindet sich wegen der deutlich höheren Laufzeiten, geringerem Blutungsrisiko und besserer Biokompatibilität im raschen Vormarsch. Als bester früher Indikator für eine erfolgreiche Beendigung einer Nierenersatztherapie gilt derzeit das Wiedereinsetzen einer Spontandiurese von mehr als 450 ml/24 h.

Abstract

The development of continuous modalities (continuous renal replacement therapy, CRRT) revolutionized the use of renal replacement therapy for critically ill patients. Suddenly excellent hemodynamic stability, nearly unlimited fluid removal and unrestricted availability became feasible. Furthermore the newest generation CRRT machines allowed practically unlimited intensity of treatment. Under these conditions initial single centre small randomized controlled trials carried out at the turn of the millennium indicated improved survival by administering CRRT doses equal or above 35 ml/kg body weight/h or daily hemodialysis. These effects, however, could not be reproduced by subsequent large multicenter randomized controlled trials. Consequently current recommendations suggest 25–30 ml/kg body weight/h actually delivered dose in CRRT or alternate day intermittent hemodialysis. Despite better hemodynamic tolerability of CRRT no trials could prove substantially improved survival over intermittent hemodialysis. Consequently modified intermittent modalities, such as sustained low efficiency dialysis (SLED) show improved acceptance under the pressure of increasing cost constraints. Regional anticoagulation by citrate is on the rise due to increased system survival, reduced risk of bleeding and improved biocompatibility. A reoccurrence of spontaneous diuresis above 450 ml/24 h has been shown to be one of the most reliable early predictors for successful termination of RRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Abbreviations

Q S :

Substitutionsrate

Q B :

Blutfluss

Q D :

Dialysatfluss

S K :

Siebkoeffizient konvektiv

S D :

Siebkoeffizient diffusiv

Kprä :

Korrekturfaktor für Prädilution

FF:

Filtrationsfraktion

Hkt:

Hämatokrit

CRRT:

kontinuierliche Nierenersatztherapie

CVVH:

kontinuierliche venovenöse Hämofiltration

CVVHD:

kontinuierliche venovenöse Hämodialyse

CVVHDF:

kontinuierliche venovenöse Hämodiafiltration

IHD:

intermittierende Hämodialyse

SLED:

„sustained low efficiency dialysis“

Literatur

  1. Joannidis M, Metnitz PG (2005) Epidemiology and natural history of acute renal failure in the ICU. Crit Care Clin 21:239–249

    Article  PubMed  Google Scholar 

  2. Metnitz PG, Krenn CG, Steltzer H et al (2002) Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med 30:2051–2058

    Article  PubMed  Google Scholar 

  3. Uchino S, Kellum JA, Bellomo R et al (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294:813–818

    Article  PubMed  CAS  Google Scholar 

  4. Berbece AN, Richardson RM (2006) Sustained low-efficiency dialysis in the ICU: cost, anticoagulation, and solute removal. Kidney Int 70:963–968

    Article  PubMed  CAS  Google Scholar 

  5. Seabra VF, Balk EM, Liangos O et al (2008) Timing of renal replacement therapy initiation in acute renal failure: a meta-analysis. Am J Kidney Dis 52:272–284

    Article  PubMed  Google Scholar 

  6. Joannidis M, Forni LG (2011) Timing of renal replacement therapy. Crit Care (in press)

  7. Uchino S, Bellomo R, Morgera S et al (2007) Continuous renal replacement therapy: a worldwide practice survey. Intensive Care Med 33(9):15631570

    Article  Google Scholar 

  8. Bellomo R, Cass A, Cole L et al (2009) Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 361:1627–1638

    Article  PubMed  Google Scholar 

  9. Davenport A (2009) Continuous renal replacement therapies in patients with acute neurological injury. Semin Dial 22:165–168

    Article  PubMed  Google Scholar 

  10. Ronco C, Bellomo R (1998) Continuous renal replacement therapy: evolution in technology and current nomenclature. Kidney Int 66 (Suppl):S160–S164

    CAS  Google Scholar 

  11. Schortgen F, Soubrier N, Delclaux C et al (2000) Hemodynamic tolerance of intermittent hemodialysis in critically ill patients: usefulness of practice guidelines. Am J Respir Crit Care Med 162:197–202

    PubMed  CAS  Google Scholar 

  12. Liao Z, Zhang W, Hardy PA et al (2003) Kinetic comparison of different acute dialysis therapies. Artif Organs 27:802–807

    Article  PubMed  Google Scholar 

  13. Brause M, Neumann A, Schumacher T et al (2003) Effect of filtration volume of continuous venovenous hemofiltration in the treatment of patients with acute renal failure in intensive care units. Crit Care Med 31:841–846

    Article  PubMed  CAS  Google Scholar 

  14. Ronco C, Bellomo R, Homel P et al (2000) Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 356:26–30

    Article  PubMed  CAS  Google Scholar 

  15. Saudan P, Niederberger M, De SS et al (2006) Adding a dialysis dose to continuous hemofiltration increases survival in patients with acute renal failure. Kidney Int 70:1312–1317

    Article  PubMed  CAS  Google Scholar 

  16. Palevsky PM, Zhang JH, O’Connor TZ et al (2008) Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 359:7–20

    Article  PubMed  CAS  Google Scholar 

  17. The RENAL Replacement Therapy Study Investigators (2009) Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 361:1627–1638

    Article  Google Scholar 

  18. Tolwani AJ, Canpbell RC, Stofan BS et al (2008) Standard versus high-dose CVVHDF for ICU-related acute renal failure. J Am Soc Nephrol 19:1233–1238

    Article  PubMed  Google Scholar 

  19. Ikizler TA, Sezer MT, Flakoll PJ et al (2004) Urea space and total body water measurements by stable isotopes in patients with acute renal failure. Kidney Int 65:725–732

    Article  PubMed  Google Scholar 

  20. Schiffl H, Lang SM, Fischer R (2002) Daily hemodialysis and the outcome of acute renal failure. N Engl J Med 346:305–310

    Article  PubMed  Google Scholar 

  21. Faulhaber-Walter R, Hafer C, Jahr N et al (2009) The Hannover Dialysis Outcome study: comparison of standard versus intensified extended dialysis for treatment of patients with acute kidney injury in the intensive care unit. Nephrol Dial Transplant 24:2179–2186

    Article  PubMed  Google Scholar 

  22. Parienti JJ, Megarbane B, Fischer MO et al (2010) Catheter dysfunction and dialysis performance according to vascular access among 736 critically ill adults requiring renal replacement therapy: a randomized controlled study. Crit Care Med 38:1118–1125

    Article  PubMed  Google Scholar 

  23. Joannidis M, Oudemans-van Straaten HM (2007) Clinical review: patency of the circuit in continuous renal replacement therapy. Crit Care 11:218

    Article  PubMed  Google Scholar 

  24. Joannidis M, Kountchev J, Rauchenzauner M et al (2007) Enoxaparin versus unfractioned heparin for anticoagulation during continuous veno-venous hemofiltration – a randomized controlled cross-over study. Intensive Care Med:15711579

    Google Scholar 

  25. Link A, Girndt M, Selejan S et al (2009) Argatroban for anticoagulation in continuous renal replacement therapy. Crit Care Med 37:105–110

    Article  PubMed  CAS  Google Scholar 

  26. Pont AC de, Hofstra JJ, Pik DR et al (2007) Pharmacokinetics and pharmacodynamics of danaparoid during continuous venovenous hemofiltration: a pilot study. Crit Care 11:R102

    Article  PubMed  Google Scholar 

  27. Morgera S, Schneider M, Slowinski T et al (2009) A safe citrate anticoagulation protocol with variable treatment efficacy and excellent control of the acid-base status. Crit Care Med 37:2018–2024

    Article  PubMed  CAS  Google Scholar 

  28. Gritters M, Grooteman MP, Schoorl M et al (2006) Citrate anticoagulation abolishes degranulation of polymorphonuclear cells and platelets and reduces oxidative stress during haemodialysis. Nephrol Dial Transplant 21:153–159

    Article  PubMed  CAS  Google Scholar 

  29. Oudemans-van Straaten HM, Bosman RJ, Koopmans M et al (2009) Citrate anticoagulation for continuous venovenous hemofiltration. Crit Care Med 37:545–552

    Article  Google Scholar 

  30. Hetzel GR, Schmitz M, Wissing H et al (2011) Regional citrate versus systemic heparin for anticoagulation in critically ill patients on continuous venovenous haemofiltration: a prospective randomized multicentre trial. Nephrol Dial Transplant 26(1):232–239

    Article  PubMed  CAS  Google Scholar 

  31. Meier-Kriesche HU, Gitomer J, Finkel K, DuBose T (2001) Increased total to ionized calcium ratio during continuous venovenous hemodialysis with regional citrate anticoagulation. Crit Care Med 29:748–752

    Article  PubMed  CAS  Google Scholar 

  32. Morgera S, Kraft AK, Siebert G et al (2002) Long-term outcomes in acute renal failure patients treated with continuous renal replacement therapies. Am J Kidney Dis 40:275–279

    Article  PubMed  Google Scholar 

  33. Uchino S, Bellomo R, Morimatsu H et al (2009) Discontinuation of continuous renal replacement therapy: a post hoc analysis of a prospective multicenter observational study. Crit Care Med 37:2576–2582

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Referentenhonorare von Gambro und Fresenius Medical Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Joannidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joannidis, M. Nierenersatztherapie: Wann? Wie? Wie lange?. Intensivmed 48, 264–269 (2011). https://doi.org/10.1007/s00390-010-0236-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00390-010-0236-8

Schlüsselwörter

Keywords

Navigation