Skip to main content
Log in

RETRACTED ARTICLE: Subependymal giant cell astrocytoma: current concepts, management, and future directions

  • Review Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

This article was retracted on 27 February 2016

Abstract

Background

Subependymal giant cell astrocytoma (SEGA) is the most common central nervous system tumor in patients with tuberous sclerosis complex (TSC). SEGAs are generally benign, non-infiltrative lesions, but they can lead to intracranial hypertension, obstructive hydrocephalus, focal neurologic deficits, and even sudden death.

Discussion

Surgical resection has been the standard treatment for SEGAs, and it is generally curative with complete resection. However, not all SEGAs are amenable to safe and complete resection. Gamma Knife stereotactic radiosurgery provides another treatment option as a primary or adjuvant treatment for SEGAs, but it has highly variable response effects with sporadic cases demonstrating its efficacy. Recently, biologically targeted pharmacotherapy with mammalian target of rapamycin (mTOR) inhibitors such as sirolimus and everolimus has provided a safe and efficacious treatment option for patients with SEGAs. However, SEGAs can recur few months after drug discontinuation, indicating that mTOR inhibitors may need to be continued to avoid recurrence. Further studies are needed to evaluate the advantages and adverse effects of long-term treatment with mTOR inhibitors. This review presents an overview of the current knowledge and particularly highlights the surgical and medical options of SEGAs in patients with TSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SEGA:

subependymal giant cell astrocytoma

TSC:

tuberous sclerosis complex

GKS:

Gamma Knife stereotactic radiosurgery

mTOR:

mammalian target of rapamycin

SEN:

subependymal nodules

LOH:

loss of heterozygosity

ERK:

extracellular signal-regulated kinase

DAPK:

death-associated protein kinase

AEDs:

antiepileptic drugs

Reference

  1. Ichikawa T, Wakisaka A, Daido S, Takao S, Tamiya T, Date I (2005) A case of solitary subependymal giant cell astrocytoma: two somatic hits of TSC2 in the tumor, without evidence of somatic mosaicism. J Mol Diagn 7:544–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kwiatkowska J, Wigowska-Sowinska J, Napierala D, Slomski R, Kwiatkowski DJ (1999) Mosaicism in tuberous sclerosis as a potential cause of the failure of molecular diagnosis. N Engl J Med 340:703–707

    Article  CAS  PubMed  Google Scholar 

  3. Souweidane MM, Luther N (2006) Endoscopic resection of solid intraventricular brain tumors. J Neurosurg 105:271–278

    Article  PubMed  Google Scholar 

  4. Hahn JS, Bejar R, Gladson CL (1991) Neonatal subependymal giant cell astrocytoma associated with tuberous sclerosis: MRI, CT and ultrasound correlation. Neurology 41:124–128

    Article  CAS  PubMed  Google Scholar 

  5. Medhkour A, Traul D, Hussain N (2002) Neonatal subependymal giant cell astrocytoma. Pediatr Neurosurg 36:271–274

    Article  PubMed  Google Scholar 

  6. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropsychiatrica 114:97–109

    Google Scholar 

  7. Byard RW, Blumbergs PC, James RA (2003) Mechanisms of unexpected death in tuberous sclerosis. J Forensic Sci 48:172–176

    Article  CAS  PubMed  Google Scholar 

  8. Brown JM (1975) Tuberose sclerosis with malignant astrocytoma. Med J Aust 1:811–814

    CAS  PubMed  Google Scholar 

  9. Waga S, Yamamoto Y, Kojima T, Sakakura M (1977) Massive hemorrhagein tumor of tuberous sclerosis. Surg Neurol 8:99–101

    CAS  PubMed  Google Scholar 

  10. Koenig MK, Butler IJ, Northrup H (2008) Regression of subependymal giant cell astrocytoma with rapamycin in tuberous sclerosis complex. J Child Neurol 23:1238–1239

    Article  PubMed Central  PubMed  Google Scholar 

  11. Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P, Wilson KA, Byars A, Sahmoud T, Franz DM (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363:1801–1811

    Article  CAS  PubMed  Google Scholar 

  12. Russell DS, Rubenstein LJ, Lumsden CE (1959) Tuberose sclerose (Bourneville’s disease), subependymal giant-cell astrocytomas: tuberose sclerosis, spongio neuroblastoma and tuberose sclerosis. In: Russell DS, Rubenstein LJ, editors. Pathology of tumours of the nervous system. London: Edward Arnold p. 29-30. 105–6, 169

  13. Adriaensen ME, Schaefer-Prokop CM, Stijnen T, Duyndam DA, Zonnenberg BA, Prokop M (2009) Prevalence of subependymal giant cell tumors in patients with tuberous sclerosis and a review of the literature. Eur J Neurol 16:691–696

    Article  CAS  PubMed  Google Scholar 

  14. Goh S, Butler W, Thiele EA (2004) Subependymal giant cell tumors in tuberous sclerosis complex. Neurology 63:1457–1461

    Article  PubMed  Google Scholar 

  15. Shepherd CW, Gómez MR, Lie JT, Crowson CS (1991) Causes of death in patients with tuberous sclerosis. Mayo Clin Proc 66:792–796

    Article  CAS  PubMed  Google Scholar 

  16. Takata K, Gaspareto EL, Da Costa LC, Lucato LT, Reed UC, Matushita H, de Aguiar PHP, Rosemberg S (2007) Subependymal giant cell astrocytoma in patients with tuberous sclerosis: magnetic resonance imaging findings in ten cases. Arq Neuropsiquiatr 65:313–316

    Article  PubMed  Google Scholar 

  17. Raju GP, Urion DK, Sahin M (2007) Neonatal subependymal giant cell astrocytoma: new case and review of literature. Pediatr Neurol 36:128–131

    Article  PubMed  Google Scholar 

  18. Franz DN, Belousova E, Sparagana S, Bebin EM, Frost M, Kuperman R (2012) Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet, Available online 13 November

  19. Nabbout R, Santos M, Rolland Y, Delalande O, Dulac O, Chiron C (1999) Early diagnosis of subependymal giant cell astrocytoma in children with tuberous sclerosis. J Neurol Neurosurg Psychiatry 66:370–375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Sinson G, Sutton LN, Yachnis AT, Duhaime AC, Schut L (1994) Subependymal giant cell astrocytomas in children. Pediatr Neurosurg 20:233–239

    Article  CAS  PubMed  Google Scholar 

  21. Fujiwara S, Takaki T, Hikita T, Nishio S (1989) Subependymal giant-cell astrocytoma associated with tuberous sclerosis. Do subependymal nodules grow? Childs Nerv Syst 5:43–44

    Article  CAS  PubMed  Google Scholar 

  22. Debiec-Rychter M, Jesionek-Kupnicka D, Zakrzewski K, Liberski PP (1999) Cytogenetic changes in two cases of subependymal giant-cell astrocytoma. Cancer Gente Cytogenet 109:29–33

    Article  CAS  Google Scholar 

  23. Sharma MC, Ralte AM, Gaekwad S, Santosh V, Shankar S, Sarkar C (2004) Subependimal giant cell astrocytoma—a clinicopathological study of 23 cases with special emphasis on histogenesis. Pathol Oncol Res 10:219–224

    Article  PubMed  Google Scholar 

  24. Sharma MC, Ralte AM, Arora R, Santosh V, Shankar SK, Sarkar C (2004) Subependymal giant cell astrocytoma—a clinicopathological study of 23 cases with special emphasis on histogenesis. Pathol Oncol Res 10(4):219–224

    Article  PubMed  Google Scholar 

  25. Anna MB, Alessandro F, Francesca C, Chiara FG, Federico M, Flavio G, Genitori L, Taddei GL (2009) Subependymal giant cell astrocytoma (SEGA): is it an astrocytoma? Morphological, immunohistochemical and ultrastructural study. Neuropathology 29:25–30

    Article  Google Scholar 

  26. Heon Y, Young Im K, Soo Young I, Haeyoung SK, Sun Ha P, Sung-Hye P, Kim DG, Jung HW (2005) Immunohistochemical study of central neurocytoma, subependymoma, and subependymal giant cell astrocytoma. J Neuro-Oncol 74:1–8

    Article  Google Scholar 

  27. Bonnin JM, Rubinstein LJ (1984) Immunohistochemistry of central nervous system tumors. Its contribution to neurosurgical diagnosis. J Neurosurg 60:1121–1133

    Article  CAS  PubMed  Google Scholar 

  28. Cuccia V, Zuccaro G, Sosa F, Monges J, Lubienieky F, Taratuto AL (2003) Subependymal giant cell astrocytoma in children with tuberous sclerosis. Childs Nerv Syst 19:232–243

    PubMed  Google Scholar 

  29. Shepherd CW, Scheithauer BW, Gomez MR, Altermatt HJ, Katzmann JA (1991) Subependymal giant cell astrocytoma: a clinical, pathological, and flow cytometric study. Neurosurgery 28:864–868

    Article  CAS  PubMed  Google Scholar 

  30. Menor F, Marti-Bonmati L, Mulas F, Poyatos C, Cortina H (1992) Neuroimaging in tuberous sclerosis: a clinicoradiological evaluation in pediatric patients. Pediatr Radiol 22:485–489

    Article  CAS  PubMed  Google Scholar 

  31. Sepp T, Yates JR, Green AJ (1996) Loss of heterozygosity in tuberous sclerosis hamartomas. J Med Genet 33:962–964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Niida Y, Stemmer-Rachamimov AO, Logrip M, Tapon D, Perez R, Kwiatkowski DJ, Sims K, MacCollin M, Louis DN, Ramesh V (2001) Survey of somatic mutations in tuberous sclerosis complex (TSC) hamartomas suggests different genetic mechanisms for pathogenesis of TSC lesions. Am J Hum Genet 69:493–503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Baskin HJ Jr (2008) The pathogenesis and imaging of the tuberous sclerosis complex. Pediatr Radiol 38:936–952

    Article  PubMed  Google Scholar 

  34. Jozwiak J, Jozwiak S, Wlodarski P (2008) Possible mechanisms of disease development in tuberous sclerosis. Lancet Oncol 9:73–79

    Article  CAS  PubMed  Google Scholar 

  35. Kwiatkowski DJ, Manning BD (2005) Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum Mol Genet 14:251–258

    Article  Google Scholar 

  36. Zhang H, Cicchetti G, Onda H (2003) Loss of Tsc1/Tsc2 activates mTOR and disrupts P13K–Akt signaling through downregulation of PDGFR. J Clin Invest 112:1223–1233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Lin Y, Henderson P, Pettersson S, Satsangi J, Hupp T, Stevens C (2011) Tuberous sclerosis-2(TSC2) regulates the stability of death-associated protein kinase-1(DAPK) through a lysosome-dependent degradation pathway. FEBS J 278(2):354–370

    Article  CAS  PubMed  Google Scholar 

  38. Chan JA, Zhang H, Roberts PS, Jozwiak S, Wieslawa G, Lewin Kowalik J, Katarzyna K, David JK (2004) Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol 63:1236–1242

    Article  CAS  PubMed  Google Scholar 

  39. Tyburczy ME, Kotulska K, Pokarowski P, Mieczkowski J, Kucharska J, Grajkowska W, Roszkowski M, Jozwiak S, Kaminska B (2010) Novel proteins regulated by mTOR in subependymal giant cell astrocytomas of patients with tuberous sclerosis complex and new therapeutic implications. Am J Pathol 176(4):1878–1890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Cross JH (2005) Neurocutaneous syndromes and epilepsy-issues in diagnosis and management. Epilepsia 46(Suppl 10):17–23

    Article  PubMed  Google Scholar 

  41. Gomez MR (1999) Natural history of cerebral tuberous sclerosis. In: Gomez MR, Sampson JR, Whittemore VH (eds) Tuberous Sclerosis Complex: Developmental Perspectives in Psychiatry. Oxford University Press, New York, pp 29–46

    Google Scholar 

  42. Jambaque I, Cusmai R, Curatolo P, Cortesi F, Perrot C, Dulac O (1991) Neuropsychological aspects of tuberous sclerosis in relation to epilepsy and MRI findings. Dev Med Child Neurol 33:698–705

    Article  CAS  PubMed  Google Scholar 

  43. O’Callaghan FJ, Harris T, Joinson C, Bolton P, Noakes M, Presdee D, Renowden S, Shiell A, Martyn CN, Osborne JP (2004) The relation of infantile spasms, tubers, and intelligence in tuberous sclerosis complex. Arch Dis Child 89:530–533

    Article  PubMed Central  PubMed  Google Scholar 

  44. Osborne J, Webb D (1993) Seizures and intellectual disability associated with tuberous sclerosis. Dev Med Child Neurol 35:276

    CAS  PubMed  Google Scholar 

  45. Gregory LH, Carl ES, The Tuberous Sclerosis Study Group (2007) Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia 48(4):617–630

    Google Scholar 

  46. de Ribaupierre S, Dorfmüller G, Bulteau C, Fohlen M, Pinard JM, Chiron C, Catherine C, Olivier D (2007) Subependymal giant-cell astrocytomas in pediatric tuberous sclerosis disease: when should we operate? Neurosurgery 60:83–89

    Article  PubMed  Google Scholar 

  47. Moavero R, Pinci M, Bombardieri R, Curatolo P (2011) The management of subependymal giant cell tumors in tuberous sclerosis: a clinician's perspective. Childs Nerv Syst 27:1203–1210

    Article  PubMed  Google Scholar 

  48. Torres VE, King BF, McKusick MA, Bjornsson J, Zincke H (2001) Update on tuberous sclerosis complex. Contrib Nephrol 136:33–49

    Article  PubMed  Google Scholar 

  49. Jiang T, Jia G, Ma Z, Luo S, Zhang Y (2011) The diagnosis and treatment of subependymal giant cell astrocytoma combined with tuberous sclerosis. Childs Nerv Syst 27:55–62

    Article  CAS  PubMed  Google Scholar 

  50. Park KJ, Kano H, Kondziolka D, Niranjan A, Flickinger JC, Lunsford LD (2011) Gamma Knife surgery for subependymal giant cell astrocytomas. J Neurosurg 114:808–813

    Article  PubMed  Google Scholar 

  51. Lopes MBS, Wiestler OD, Stemmer-Rachamimov AO, Sharma MC (2007) Tuberous sclerosis complex and subependymal giant cell astrocytoma, in Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds): WHO Classification of Tumours of the Central Nervous System, ed 4. Lyon: IARC Press Vol 1, pp 218–221

  52. Hyman MH, Whittemore VH (2000) National Institutes of Health consensus conference: tuberous sclerosis complex. Arch Neurol 57:662–665

    Article  CAS  PubMed  Google Scholar 

  53. Roach ES, DiMario FJ, Kandt RS, Northrup H (1999) Tuberous Sclerosis Consensus Conference: recommendations for diagnostic evaluation. National Tuberous Sclerosis Association. J Child Neurol 14:401–407

    Article  CAS  PubMed  Google Scholar 

  54. Berhouma M (2010) Management of subependymal giant cell tumors in tuberous sclerosis complex: the neurosurgeon’s perspective. World J Pediatr 6:103–110

    Article  PubMed  Google Scholar 

  55. Kim SK, Wang KC, Cho BK, Jung HW, Lee YJ, Chung YS, Lee JY, Park SH, Kim YM, Choe G, Chi JG (2001) Biological behavior and tumorigenesis of subependymal giant cell astrocytomas. J Neurooncol 52:217–225

    Article  CAS  PubMed  Google Scholar 

  56. Boogaarts HD, Decq P, Grotenhuis JA, Le GC, Nseir R, Jarraya B, Djindjian M, Michel D, Tjemme B (2011) Long-term results of the neuroendoscopic management of colloid cysts of the third ventricle: a series of 90 cases. Neurosurgery 68:179–187

    Article  PubMed  Google Scholar 

  57. Cai R, Di X (2010) Combined intra- and extra-endoscopic techniques for aggressive resection of subependymal giant cell astrocytomas. World Neurosurg 73:713–718

    Article  PubMed  Google Scholar 

  58. Beems T, Grotenhuis JA (2001) Subependymal giant cell astrocytoma in tuberous sclerosis: endoscopic images and the implications for therapy. Minim Invasive Neurosurg 44:58–60

    Article  CAS  PubMed  Google Scholar 

  59. Cappabianca P, Cinalli G, Gangemi M, Brunori A, Cavallo L, deDivitiis E, Decq P, Delitala A, Di Rocco F, Frazee J, Godano U, Grotenhuis A, Longatti P (2008) Application of neuroendoscopy to intraventricular lesions. Neurosurgery 62(suppl2):575–597

    PubMed  Google Scholar 

  60. Shepherd CW, Gomez MR (1991) Mortality in the Mayo Clinic Tuberous Sclerosis Complex Study. Ann NY Acad Sci 615:375–377

    Article  CAS  PubMed  Google Scholar 

  61. Franz DN, de Vries PJ, Crino PB (2009) Giant cell astrocytomas in tuberous sclerosis complex. Arch Dis Child 94:75–76

    CAS  PubMed  Google Scholar 

  62. Henderson MA, Fakiris AJ, Timmerman RD, Worth RM, Lo SS, Witt TC (2009) Gamma Knife stereotactic radiosurgery for low-grade astrocytomas. Stereotact Funct Neurosurg 87:161–167

    Article  PubMed  Google Scholar 

  63. Park YG, Kim EY, Chang JW, Chung SS (1997) Volume changes following gamma knife radiosurgery of intracranial tumors. Surg Neurol 48:488–493

    Article  CAS  PubMed  Google Scholar 

  64. Wang LW, Shiau CY, Chung WY, Wu HM, Guo WY, Liu KD, Ho DMT, Wong TT, Pan DHC (2006) Gamma Knife surgery for low-grade astrocytomas: evaluation of long-term outcome based on a 10-year experience. J Neurosurg 105(suppl):127–132

    Google Scholar 

  65. Park KJ, Kano H, Kondziolka D, Niranjan A, Flickinger JC, Lunsford LD (2011) Gamma Knife surgery for subependymal giant cell astrocytomas. Clinical article. J Neurosurg 114:808–813

    Article  PubMed  Google Scholar 

  66. Matsumura H, Takimoto H, Shimada N, Hirata M, Ohnishi T, Hayakawa T (1998) Glioblastoma following radiotherapy in a patient with tuberous sclerosis. Neurol Med Chir (Tokyo) 38:287–291

    Article  CAS  Google Scholar 

  67. Torres OA, Roach ES, Delgado MR, Sparagana SP, Sheffield E, Swift D, Bruce D (1998) Early diagnosis of subependymal giant cell astrocytoma in patients with tuberous sclerosis. J Child Neurol 13:173–177

    Article  CAS  PubMed  Google Scholar 

  68. Perek-Polnik M, Jozwiak S, Jurkiewicz E, Perek D, Kotulska K (2012) Effective everolimus treatment of inoperable, life-threatening subependymal giant cell astrocytoma and intractable epilepsy in a patient with tuberous sclerosis complex. Eur J Paediatr Neurol 16:83–85

    Article  PubMed  Google Scholar 

  69. Franz DN (2011) Everolimus: an mTOR inhibitor for the treatment of tuberous sclerosis. Expert Rev Anticancer Ther 11:1181–1192

    Google Scholar 

  70. Franz DN, Leonard J, Tudor C, Chuck G, Care M, Sethuraman G et al (2006) Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol 59:490–498

    Article  CAS  PubMed  Google Scholar 

  71. Birca A, Mercier C, Major P (2010) Rapamycin as an alternative to surgical treatment of subependymal giant cell astrocytomas in a patient with tuberous sclerosis complex. J Neurosurg Pediatr 6:381–384

    Article  PubMed  Google Scholar 

  72. Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM, Schmithorst VJ, Laor T, Brody AS, Bean J, Salisburyand S, Franz DN (2008) Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 358:140–151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Lam C, Bouffet E, Tabori U, Mabbott D, Taylor M, Bartels U (2010) Rapamycin (sirolimus) in tuberous sclerosis associated pediatric central nervous system tumors. Pediatr Blood Cancer 54:476–479

    Article  PubMed  Google Scholar 

  74. Holmes GL, Stafstrom CE (2007) Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsi 48:617–630

    Article  Google Scholar 

  75. Chu-Shore CJ, Major P, Camposano S, Muzykewicz D, Thiele EA (2010) The natural history of epilepsyin tuberous sclerosis complex. Epilepsia 51:1236e41

    Google Scholar 

  76. Curatolo P, Bombardieri R, Jozwiak S (2008) Tuberous sclerosis. Lancet 372(9639):657e68

    Article  Google Scholar 

  77. Jansen FE, Braams O, Vincken KL, Algra A, Anbeek P, Jennekens-Schinkel A, Halley D, Zonnenberg BA, Ouweland A, Huffelen AC, Nieuwenhuizen O, Nellist M (2008) Overlapping neurologic and cognitive phenotypes in patients with TSC1 or TSC2 mutations. Neurology 70:908e15

    Google Scholar 

  78. Wong M (2012) mTOR as a potential treatment target for epilepsy. Future Neurol 7(5):537–545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Graham KF, Haddick PC, Jan YN, Jan LY (2006) Activity- and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites. Science 314:144–148

    Article  Google Scholar 

  80. Wang Y, Barbaro MF, Baraban SC (2006) A role for the mTOR pathway in surface expression of AMPA receptors. Neurosci Lett 401:35–39

    Article  CAS  PubMed  Google Scholar 

  81. Wilfong A, Krueger DA, Holland-Bouley K (2011) Everolimus improves seizure control in tuberous sclerosis complex. Presented at: American Epilepsy Society Annual Meeting Baltimore, MD, USA, (Late-breaking Abstract 3.329)

  82. Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ et al (2008) Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med 14:843–848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Govindarajan B, Mizesko MC, Miller MS, Onda H, Nunnelley M, Casper K, Brat D, Cohen C, Arbiser JL (2003) Tuberous sclerosis-associated neoplasms express activated p42/44 mitogen-activated protein (MAP) kinase, and inhibition of MAP kinase signaling results in vivo tumor growth. Clin Cancer Res 9:3469–3475

    CAS  PubMed  Google Scholar 

  84. Jozwiak J, Grajkowska W, Kotulska K, Jozwiak S, Zalewski W, Zajaczkowska A, Roszkowski M, Slupianek A, Wlodarski P (2007) Brain tumor formation in tuberous sclerosis depends on Erk activation. Neuromol Med 9:117–127

    Article  CAS  Google Scholar 

  85. Fingar DC, Blenis J (2004) Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23:3151–3171

    Article  CAS  PubMed  Google Scholar 

  86. Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P, Cheresh DA (1997) Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 137:481–492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Pullikuth AK, Catling AD (2007) Scaffold mediated regulation of MAPK signaling and cytoskeletal dynamics: a perspective. Cell Signal 19:1621–1632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Yalon M, Ben-Sira L, Constantini S, Toren A (2011) Regression of subependymal giant cell astrocytomas with RAD001 (everolimus) in tuberous sclerosis complex. Childs Nerv Syst 27:179–181

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are given for the important recommendations made by Jian Chen’s colleagues on this article.

Conflict of interest

We certify that there is no actual or potential conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Chen.

Additional information

Taohui Ouyang and Na Zhang contributed equally to this work.

This article has been retracted by the Journal Editors due to considerable overlap with the article “Advances in the management of subependymal giant cell astrocytoma” by Thomas L. Beaumont, David D. Limbrick, Matthew D. Smyth published in the same journal, Volume 28, no. 7, 2012 pp 963-968.

About this article

Cite this article

Ouyang, T., Zhang, N., Benjamin, T. et al. RETRACTED ARTICLE: Subependymal giant cell astrocytoma: current concepts, management, and future directions. Childs Nerv Syst 30, 561–570 (2014). https://doi.org/10.1007/s00381-014-2383-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-014-2383-x

Keywords

Navigation