Skip to main content
Log in

Intravitreale Fibrinolyse und retinaler Venenverschluss

Intravitreal fibrinolysis and retinal vein occlusion

  • Originalien
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Ziel der vorliegenden Studie war es, verschiedene intravitreale Fibrinolyseparameter zu analysieren und zwischen Augen mit retinalem Zentralvenenverschluss (ZVV), retinalem Venenastverschluss (VAV) und einer Kontrollgruppe zu vergleichen. Die gefundenen Aktivitäten und Konzentrationen wurden mit der intravitrealen VEGF („vascular endothelial growth factor“)-Konzentration als Zeichen der Schwere der vorliegenden Blut-Retina-Schranken (BRS)-Störung korreliert.

Material und Methoden

Aus 14 Augen mit ZVV, 22 Augen mit VAV sowie 11 Kontrollaugen wurden Proben aus dem zentralen Glaskörper entnommen und auf die Aktivitäten bzw. Konzentrationen an Plasminogen, Plasmin-α2-Antiplasmin (PAP) und VEGF untersucht.

Ergebnisse

Die intravitrealen Aktivitäten/Konzentrationen lagen in der ZVV-/VAV-/Kontrollgruppe bei 2,07 ± 1,87 %/1,24 ± 1,12 %/0,38 ± 0,63 % für funktionelles Plasminogen, bei 8,14 ± 7,07 ng/ml/6,96 ± 4,8 ng/ml/9,74 ± 10,98 ng/ml für PAP und bei 1269 ± 1318 pg/ml/528 ± 543 pg/ml/105 ± 116 pg/ml für VEGF. Es zeigten sich signifikante Unterschiede in Bezug auf die intravitreale Plasminogenaktivität und VEGF-Konzentration zwischen den 3 Gruppen (jeweils p < 0,001). Die intravitreale Plasminogenaktivität korreliert mit der intravitrealen VEGF-Konzentration (r = 0,478, p = 0,001). Unerwünschte Nebenwirkungen oder schwerwiegende Komplikationen traten nicht auf.

Schlussfolgerung

Es bestehen signifikante Unterschiede zwischen der intravitrealen Plasminogenaktivität sowie der intravitrealen VEGF-Konzentration zwischen Augen mit ZVV, VAV und einer Kontrollgruppe. Die intravitreale Plasminogenaktivität ist direkt mit der Schwere der bestehenden BRS-Störung korreliert. Die genaue Kenntnis der intravitrealen Fibrinolyse kann neue therapeutische Ansätze in Augen mit einem retinalen Venenverschluss (RVO) eröffnen.

Abstract

Background

The aim of this study was to analyze and compare intravitreal activity and concentrations of different components of the fibrinolytic cascade in eyes with central retinal vein occlusion (CRVO) as well as branch RVO (BRVO) and healthy controls. These results were correlated with corresponding intravitreal vascular endothelial growth factor (VEGF) concentrations as a biomarker for the severity of blood-retina barrier (BRB) breakdown.

Material and methods

Vitreous samples were obtained from 14 eyes with CRVO, 22 eyes with BRVO and 11 controls and the activities and concentrations of plasminogen, plasmin-alpha2-antiplasmin (PAP) and VEGF were analyzed.

Results

Intravitreal activities and concentrations in the CRVO, BRVO and control groups were 2.07 ± 1.87 %, 1.24 ± 1.12 % and 0.38 ± 0.63 % for functional plasminogen, 8.14 ± 7.07 ng/ml, 6.96 ± 4.8 ng/ml and 9.74 ± 10.98 ng/ml for PAP while respective results for VEG levels were 1269 ± 1318 pg/ml, 528 ± 543 pg/ml and 105 ± 116 pg/ml, respectively. There were significant differences in intravitreal functional plasminogen and VEGF between the groups analyzed (in each case p < 0.001). Intravitreal functional plasminogen correlated with intravitreal VEGF concentrations (r = 0.478, p = 0.001). No adverse events or serious side effects occurred.

Conclusion

There were significant differences in intravitreal functional plasminogen and VEGF between eyes with CRVO, BRVO and controls. Intravitreal activity of plasminogen was significantly correlated with the severity of BRB breakdown in RVO affected eyes. The knowledge of intravitreal activities and concentrations of different components of the fibrinolytic cascade could offer new therapeutic strategies in RVO-affected eyes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Branch Vein Occlusion Study Group (1986) Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion. A randomized clinical trial. Arch Ophthalmol 104:34–41

    Article  Google Scholar 

  2. o A- (1993) Baseline and early natural history report. The Central Vein Occlusion Study. Arch Ophthalmol 111:1087–1095

    Article  Google Scholar 

  3. The Central Vein Occlusion Study Group (1997) Natural history and clinical management of central retinal vein occlusion. Arch Ophthalmol 115:486–491

    Article  Google Scholar 

  4. Bertelmann T, Kičová N, Messerschmidt-Roth A et al (2011) The vitreomacular interface in retinal vein occlusion. Acta Ophthalmol 89:e327–e331

    Article  PubMed  Google Scholar 

  5. Bertelmann T, Mennel S, Sekundo W et al (2013) Intravitreal functional plasminogen is elevated in central retinal vein occlusion. Ophthalmic Res 50:151–159

    Article  CAS  PubMed  Google Scholar 

  6. Bertelmann T, Schulze S, Bölöni R et al (2014) Intravitreal vascular endothelial growth factor. Graefes Arch Clin Exp Ophthalmol 252(4):583–588

    Article  CAS  PubMed  Google Scholar 

  7. Bertelmann T, Sekundo W, Stief T et al (2014) Thrombin activity in normal vitreous liquid. Blood Coagul Fibrinolysis 25:94–96

    Article  CAS  PubMed  Google Scholar 

  8. Bertelmann T, Spychalska M, Kohlberger L et al (2013) Intracameral concentrations of the fibrinolytic system components in patients with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 251:2697–2704

    Article  CAS  PubMed  Google Scholar 

  9. Bertelmann T, Stief T, Bölöni R et al (2014) Fibrinolysis in normal vitreous liquid. Blood Coagul Fibrinolysis 25:217–220

    Article  CAS  PubMed  Google Scholar 

  10. Brown DM, Campochiaro PA, Singh RP et al (2010) Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology 117:1124–1133

    Article  PubMed  Google Scholar 

  11. Campochiaro PA, Heier JS, Feiner L et al (2010) Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology 117:1102–1112

    Article  PubMed  Google Scholar 

  12. Dolan G, Neal K, Cooper P et al (1994) Protein C, antithrombin III and plasminogen: effect of age, sex and blood group. Br J Haematol 86:798–803

    Article  CAS  PubMed  Google Scholar 

  13. Ecker SM, Hines JC, Pfahler SM et al (2011) Aqueous cytokine and growth factor levels do not reliably reflect those levels found in the vitreous. Mol Vis 17:2856–2863

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Gandorfer A (2007) Pharmacologic vitreolysis. Dev Ophthalmol 39:149–156

    Article  CAS  PubMed  Google Scholar 

  15. Gasperini JL, Fawzi AA, Khondkaryan A et al (2012) Bevacizumab and ranibizumab tachyphylaxis in the treatment of choroidal neovascularisation. Br J Ophthalmol 96:14–20

    Article  PubMed  Google Scholar 

  16. Haller JA, Bandello F, Belfort R et al (2010) Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Ophthalmology 117:1134–1146

    Article  PubMed  Google Scholar 

  17. Hattenbach LO, Allers A, Gümbel HO et al (1999) Vitreous concentrations of TPA and plasminogen activator inhibitor are associated with VEGF in proliferative diabetic vitreoretinopathy. Retina 19:383–389

    Article  CAS  PubMed  Google Scholar 

  18. Hayreh SS (1994) Retinal vein occlusion. Indian J Ophthalmol 42:109–132

    CAS  PubMed  Google Scholar 

  19. Heissig B, Ohki-Koizumi M, Tashiro Y et al (2012) New functions of the fibrinolytic system in bone marrow cell-derived angiogenesis. Int J Hematol 95:131–137

    Article  PubMed  Google Scholar 

  20. Hesse L, Nebeling B, Schroeder B et al (2000) Induction of posterior vitreous detachment in rabbits by intravitreal injection of tissue plasminogen activator following cryopexy. Exp Eye Res 70:31–39

    Article  CAS  PubMed  Google Scholar 

  21. Hikichi T, Konno S, Trempe CL (1995) Role of the vitreous in central retinal vein occlusion. Retina 15:29–33

    CAS  PubMed  Google Scholar 

  22. Kim SJ, Shiba E, Kobayashi T et al (1998) Prognostic impact of urokinase-type plasminogen activator (PA), PA inhibitor type-1, and tissue-type PA antigen levels in node-negative breast cancer: a prospective study on multicenter basis. Clin Cancer Res 4:177–182

    CAS  PubMed  Google Scholar 

  23. Koch FH, Koss MJ (2011) Microincision vitrectomy procedure using Intrector technology. Arch Ophthalmol 129:1599–1604

    Article  PubMed  Google Scholar 

  24. Korobelnik JF, Holz FG, Roider J et al (2014) Intravitreal aflibercept injection for macular edema resulting from central retinal vein occlusion: one-year results of the phase 3 GALILEO study. Ophthalmology 121(1):202–208

    Article  PubMed  Google Scholar 

  25. Koss MJ, Naser H, Sener A et al (2012) Combination therapy in diabetic macular oedema and retinal vein occlusion – past and present. Acta Ophthalmol 90:580–589

    Article  PubMed  Google Scholar 

  26. Koss MJ, Koss MJ, Pfister M, Koch FH (2011) Inflammatory and angiogenic protein detection in the human vitreous: cytometric bead assay. J Ophthalmol. doi:10.1155/2011/459251

  27. Koss MJ, Pfister M, Rothweiler F et al (2012) Comparison of cytokine levels from undiluted vitreous of untreated patients with retinal vein occlusion. Acta Ophthalmol 90:e98–e103

    Article  PubMed  Google Scholar 

  28. Kumagai K, Ogino N, Furukawa M et al (2012) Three treatments for macular edema because of branch retinal vein occlusion: intravitreous bevacizumab or tissue plasminogen activator, and vitrectomy. Retina 32:520–529

    Article  CAS  PubMed  Google Scholar 

  29. Mayr-Sponer U, Waldstein SM, Kundi M et al (2013) Influence of the vitreomacular interface on outcomes of ranibizumab therapy in neovascular age-related macular degeneration. Ophthalmology 120(12):2620–2629

    Article  PubMed  Google Scholar 

  30. Murakami T, Takagi H, Ohashi H et al (2007) Role of posterior vitreous detachment induced by intravitreal tissue plasminogen activator in macular edema with central retinal vein occlusion. Retina 27:1031–1037

    Article  PubMed  Google Scholar 

  31. Noma H, Funatsu H, Mimura T et al (2010) Aqueous humor levels of vasoactive molecules correlate with vitreous levels and macular edema in central retinal vein occlusion. Eur J Ophthalmol 20:402–409

    PubMed  Google Scholar 

  32. Noma H, Funatsu H, Yamasaki M et al (2008) Aqueous humour levels of cytokines are correlated to vitreous levels and severity of macular oedema in branch retinal vein occlusion. Eye (Lond) 22:42–48

  33. Pielen A, Feltgen N, Isserstedt C et al (2013) Efficacy and safety of intravitreal therapy in macular edema due to branch and central retinal vein occlusion: a systematic review. PLoS One 8:e78538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Quinlan PM, Elman MJ, Bhatt AK et al (1990) The natural course of central retinal vein occlusion. Am J Ophthalmol 110:118–123

    Article  CAS  PubMed  Google Scholar 

  35. Scholl S, Kirchhof J, Augustin AJ (2010) Pathophysiology of macular edema. Ophthalmologica 224(Suppl 1):8–15

    Article  CAS  PubMed  Google Scholar 

  36. Shimada H, Akaza E, Yuzawa M et al (2009) Concentration gradient of vascular endothelial growth factor in the vitreous of eyes with diabetic macular edema. Invest Ophthalmol Vis Sci 50:2953–2955

    Article  PubMed  Google Scholar 

  37. Silva R, Cachulo ML, Fonseca P et al (2011) Age-related macular degeneration and risk factors for the development of choroidal neovascularisation in the fellow eye: a 3-year follow-up study. Ophthalmologica 226:110–118

    Article  PubMed  Google Scholar 

  38. Stefansson S, McMahon GA, Petitclerc E et al (2003) Plasminogen activator inhibitor-1 in tumor growth, angiogenesis and vascular remodeling. Curr Pharm Des 9:1545–1564

    Article  CAS  PubMed  Google Scholar 

  39. Steinkamp GW, Hattenbach LO, Heider HW et al (1993) Plasminogen activator and PAI. Detection in aqueous humor of the human eye. Ophthalmologe 90:73–75

    CAS  PubMed  Google Scholar 

  40. Stief T (Hrsg) (2012) Thrombin – applied clinical biochemistry of the main factor of coagulation. Nova science publishers, New York

  41. Zegarra H, Gutman FA, Conforto J (1979) The natural course of central retinal vein occlusion. Ophthalmology 86:1931–1942

    Article  CAS  PubMed  Google Scholar 

  42. Bertelmann T, Bertelmann I, Szurman P et al (2014) Vitreous body and retinal vein occlusion. Ophthalmologe [Epub ahead of print]

  43. Bertelmann T, Sekundo W, Strodthoff S et al (2014) Intravitreal functional plasminogen in eyes with branch retinal vein occlusion. Ophthalmic Res 52(2):74–80

    Article  PubMed  Google Scholar 

Download references

Finanzierung

Diese Studie wurde finanziell durch die Novartis Pharma AG, Nürnberg, unterstützt. Es bestand kein Einfluss auf die Konzeption, Durchführung und Auswertung der Studie.

Einhaltung ethischer Richtlinien

Interessenkonflikt. T. Bertelmann, T. Stief, W. Sekundo, M. Witteborn, S. Strodthoff, S. Mennel, N. Nguyen und M. Koss geben an, dass kein Interessenkonflikt besteht. Alle im vorliegenden Manuskript beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bertelmann FEBO.

Additional information

___ ___

Die Ergebnisse der vorliegenden Arbeit wurden auf dem 112. DOG-Kongress in Leipzig im September 2014 präsentiert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertelmann, T., Stief, T., Sekundo, W. et al. Intravitreale Fibrinolyse und retinaler Venenverschluss. Ophthalmologe 112, 155–161 (2015). https://doi.org/10.1007/s00347-014-3107-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-014-3107-z

Schlüsselwörter

Keywords

Navigation