Skip to main content
Log in

Femtosekundenlaser in der Kataraktchirurgie

Eine kritische Betrachtung

Femtosecond laser in cataract surgery

A critical appraisal

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Der Femtosekundenlaser (FSL) hält zunehmend Einzug in die moderne Kataraktchirurgie. Als potenzielle Vorteile gegenüber der manuellen Standardchirurgie werden die höhere Präzision und Reproduzierbarkeit der Schnittführung und der Kapseleröffnung sowie die Reduktion der Ultraschallenergie für die Kernaufarbeitung angeführt. Durch die exakte Dimensionierung der Kapselöffnung sollen auch Dezentrierung und Verkippung der Kunstlinsenoptik verringert und die Zielrefraktion besser getroffen werden. Zusammen mit der Möglichkeit der Korrektur niedriger Hornhautastigmatismen durch Bogeninzisionen in der Hornhaut soll der FSL die Kataraktoperation von einem rein kurativen in einen refraktiven Eingriff überführen.

Methoden

Neben den eigenen Erfahrungen analysiert dieser Übersichtbeitrag kritisch die Beobachtungen von verschiedenen anderen Operateuren und Geräten bei der Ausführung laserassistierter Kataraktoperationen sowie die bis dato in Wort und Schrift publizierten Ergebnisse. Es werden die Vor- und Nachteile im Hinblick auf das chirurgische und refraktive Ergebnis analysiert und den über mehrere Jahrzehnte gesammelten Erfahrungen mit der manuellen Kataraktchirurgie gegenübergestellt. Zudem werden auch ökonomische und gesundheitspolitische Aspekte angeführt.

Ergebnisse

Die FSL-Kataraktchirurgie erhöht die Präzision und Reproduzierbarkeit der Zugangsschnitte und der Kapseleröffnung und vermindert die für die Kernaufarbeitung erforderliche Ultraschallenergie. Der klinische Nutzen wird allerdings durch die nachträglichen chirurgischen Manipulationen der Inzisionen (Linsenaspiration, Kunstlinseninjektion), durch die fehlende Darstellbarkeit des Linsenäquators für eine durchweg perfekte Zentrierung der Kapsulotomie auf die Kunstlinsenoptik und die geringe Bedeutung der Ultraschallenergie für das Hornhautendothel relativiert – dies vor allem vor dem Hintergrund der hohen Kosten. Demgegenüber treten Einrisse des vorderen Kapselrandes als wirklich relevante Komplikation mit dem FSL zumindest derzeit noch deutlich häufiger auf. Aus ökonomischer und gesundheitspolitischer Sicht ist die mögliche Übernahme der Kataraktchirurgie als standardisierbarem und extrem häufig durchgeführtem Eingriff durch die Industrie oder Investoren zu bedenken, was die derzeitigen dezentralisierten und individualisierten Strukturen und in der Folge die Patientenströme grundlegend verändern und den Chirurgen weitgehend abhängig oder überflüssig machen könnte.

Abstract

Background

The use of femtosecond lasers (FSL) is increasingly spreading in cataract surgery. Potential advantages over standard manual cataract surgery are the superior precision of corneal incisions and capsular openings as well as the reduction of ultrasound energy for lens nucleus work-up. Exact positioning and dimensioning of the anterior capsular opening should help reduce decentration and tilt of the intraocular lens (IOL) optics and thus achieve better target refraction. Together with the possibility to correct low-grade corneal astigmatism by precise arcuate incision, FSL technology is expected to convert cataract surgery from a purely curative into a refractive procedure.

Methods

Apart from own experiences this review article critically analyses the pertinent literature published so far as well as congress presentations and personal reports of other FSL surgeons. The advantages and disadvantages are scrutinized with regard to their impact on the surgical and refractive results and compared with those experienced by the authors with manual cataract surgery over several decades. Economic and healthcare political aspects are also addressed.

Results

The use of FSL surgery improves the precision and reproducibility of corneal incisions and the capsular opening and reduces the amount of ultrasound energy required for lens nucleus work-up. However, the clinical benefits must be put into perspective due to the subsequent surgical manipulation of the incisions (during lens emulsification, aspiration and IOL injection), the lacking possibility to visualize the crystalline lens equator as the reference for correct capsulotomy centration and the relativity of ultrasound energy consumption on the corneal endothelial trauma. This is of particular relevance against the background of the significantly higher costs. Conversely, tears of the anterior capsule edge which, apart from interfering with correct IOL positioning, may entail serious complications presently occur more frequently with all FSL instruments. From the economic and healthcare political viewpoint, thought should be given to the possible acquisition of the cataract surgical business by the industry or investors, as cataract surgery is a high-volume standardized procedure with enormous future potential. This could fundamentally change our currently decentralized and individualized structures and subsequently the steam of patient and make surgeons largely dependent or superfluous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Ernest PH, Lavery KT, Kiessling LA (1994) Relative strength of scleral corneal and clear corneal incisions constructed in cadaver eyes. J Cataract Refract Surg 20:626–629

    Article  CAS  PubMed  Google Scholar 

  2. Ernest PH, Fenzl R, Lavery KT, Sensoli A (1995) Relative stability of clear corneal incisions in a cadaver eye model. J Cataract Refract Surg 21:39–42

    Article  CAS  PubMed  Google Scholar 

  3. Vass C, Menapace R (1994) Computerized statistical analysis of corneal topography for the evaluation of changes in corneal shape after surgery. Am J Ophthalmol 15:177–184

    Google Scholar 

  4. Vass C, Menapace R, Rainer G et al (1998) Comparative study of corneal topographic changes after 3.0 mm beveled and hinged clear corneal incisions. J Cataract Refract Surg 24:1498–1504

    Article  CAS  PubMed  Google Scholar 

  5. Rainer G, Menapace R, Vass C et al (1999) Corneal shape changes after temporal and superolateral 3.0 mm clear corneal incisions. J Cataract Refract Surg 25:1121–1126

    Article  CAS  PubMed  Google Scholar 

  6. Rainer G, Menapace R, Vass C et al (1997) Surgically induced astigmatism following a 4.0 mm sclerocorneal valve incision. J Cataract Refract Surg 23:358–364

    Article  CAS  PubMed  Google Scholar 

  7. Menapace R (1996) Aktuelle Wundkonstruktionen: Indikation, Technik, Deformationsresistenz und Hornhautkurvaturänderung. In: Vörösmarthy D et al (Hrsg) 10. Kongress der Deutschsprachigen Gesellschaft für Intraokularlinsenimplantation und refraktive Chirurgie, Budapest. Springer, Berlin, S 27–40

  8. Kaminski S, Kuchar A, Kiss C (2013) Anterior segment OCT measurement of corneal incisions after femtosecond laser cataract surgery. Abstrakt. XXXI. Kongress der ESCRS, 2013, Amsterdam

  9. Serrao S, Lombardo G, Ducoli P et al (2013) Evaluation of femtosecond laser clear corneal incision: an experimental study. J Refract Surg 29:418–424

    Article  PubMed  Google Scholar 

  10. Serrao S, Lombardo G, Schiano-Lomoriello D et al (2014) Effect of femtosecond laser-created clear corneal incision on corneal topography. J Cataract Refract Surg 40:531–537

    Article  PubMed  Google Scholar 

  11. Endophthalmitis Study Group, European Society of Cataract & Refractive Surgeons (2007) Prophylaxis of postoperative endophthalmitis following cataract surgery: results of the ESCRS multicenter study and identification of risk factors. J Cataract Refract Surg 33:978–988

    Article  Google Scholar 

  12. McDonnell PJ, Taban M, Sarayba M et al (2003) Dynamic morphology of clear corneal cataract incisions. Ophthalmology 110:2342–2348

    Article  PubMed  Google Scholar 

  13. Taban M, Rao B, Reznik J et al (2004) Dynamic morphology of sutureless cataract wounds – effect of incision angle and location. Surv Ophthalmol 49(Suppl 2):62–72

    Article  Google Scholar 

  14. Taban M, Behrens A, Newcomb RL et al (2005) Acute endophthalmitis following cataract surgery: a systematic review of the literature. Arch Ophthalmol 123:613–620 (Review)

    Article  PubMed  Google Scholar 

  15. Friedman NJ, Palanker DV, Schuele G et al (2011) Femtosecond laser capsulotomy. J Cataract Refract Surg 37:1189–1198

    Article  PubMed  Google Scholar 

  16. Dick HB, Peña-Aceves A, Manns M, Krummenauer F (2008) New technology for sizing the continuous curvilinear capsulorhexis: prospective trial. J Cataract Refract Surg 34:1136–1144

    Article  PubMed  Google Scholar 

  17. Auffarth GU, Reddy KP, Ritter R et al (2013) Comparison of the maximum applicable stretch force after femtosecond laser-assisted and manual anterior capsulotomy. J Cataract Refract Surg 39:105–109

    Article  PubMed  Google Scholar 

  18. Abell RG, Davies PE, Phelan D et al (2014) Anterior capsulotomy integrity after femtosecond laser-assisted cataract surgery. Ophthalmology 121:17–24

    Article  PubMed  Google Scholar 

  19. Ostovic M, Klaproth OK, Hengerer FH et al (2013) Light microscopy and scanning electron microscopy analysis of rigid curved interface femtosecond laser-assisted and manual anterior capsulotomy. J Cataract Refract Surg 39:1587–1592

    Article  PubMed  Google Scholar 

  20. Krag S, Thim K, Corydon L, Kyster B (1994) Biomechanical aspects of the anterior capsulotomy. J Cataract Refract Surg 20:410–416

    Article  CAS  PubMed  Google Scholar 

  21. Krag S, Thim K, Corydon L (1997) Diathermic capsulotomy versus capsulorhexis: a biomechanical study. J Cataract Refract Surg 23:86–90

    Article  CAS  PubMed  Google Scholar 

  22. Hoffmann P (2014) Complications and challenges in laser-assisted cataract surgery. 1st European Femtolaser User Meeting (EFUM), Hamburg

  23. Chang JSM, Chen IN, Chan WM et al (2014) Initial evaluation of a femtosecond laser system in cataract surgery. J Cataract Refract Surg 40:29–36

    Article  PubMed  Google Scholar 

  24. Conrad-Hengerer I, Hengerer F, Schultz T, Dick B (2013) Femtosecond laser-assisted cataract surgery in eyes with a small pupil. J Cataract Refract Surg 39:1314–1320

    Article  PubMed  Google Scholar 

  25. Abell RG, Kerr NM, Vote BJ (2013) Toward zero effective phacoemulsification time using femtosecond laser pretreatment. Ophthalmology 120:942–948

    Article  PubMed  Google Scholar 

  26. Conrad-Hengerer I, Hengerer FH, Schultz T, Dick HB (2012) Effect of femtosecond laser fragmentation on effective phacoemulsification time in cataract surgery. J Refract Surg 28:879–883

    Article  PubMed  Google Scholar 

  27. Han S, Lee K, Lee D, Park J (2014) Comparison of laser refractive cataract surgery with a femtosecond laser versus conventional cataract surgery. ESCRS 2014, Amsterdam

  28. Reddy KS, Kandulla J, Auffarth GU (2013) Effectiveness and safety of femtosecond laser-assisted lens fragmentation and anterior capsulotomy versus the manual technique in cataract surgery. J Cataract Refract Surg 39:1297–1306

    Article  PubMed  Google Scholar 

  29. Conrad-Hengerer I, Al Juburi M, Schultz T et al (2013) Corneal endothelial cell loss and corneal thickness in conventional compared with femtosecond laser-assisted cataract surgery: three-month follow-up. J Cataract Refract Surg 39:1307–1313

    Article  PubMed  Google Scholar 

  30. Park, JH, Lee SM, Kwon J-W et al (2010) Ultrasound energy in phacoemulsification: a comparative analysis of phaco-chop and stop-and-chop techniques according to the degree of nuclear density. Ophthalmic Surg Lasers Imaging 41:236–241

    Article  PubMed  Google Scholar 

  31. Storr-Paulsen A, Norregaard JC, Ahmed S et al (2008) Endothelial cell damage after cataract surgery: divide-and-conquer versus phaco-chop technique. J Cataract Refract Surg 43:996–1000

    Article  Google Scholar 

  32. Pereira AC, Porfirio F, Freitas LL, Belfort R (2006) Ultrasound energy and endothelial cell loss with stop-and-chop and nuclear pre-slice phaco. J Cataract Refract Surg 32:1661–1666

    Article  PubMed  Google Scholar 

  33. Green D, Liu TT, Shield DR (2013) Corneal endothelial cell loss and corneal thickness. Yale resident’s review. EyeWorld 74–75

  34. Raskin E, Paula JS, Cruz AA, Coelho RP (2010) Effect of bevel position on the corneal endothelium after phacoemulsification. Arq Bras Oftalmol 73:508–510

    Article  PubMed  Google Scholar 

  35. Marcantonio JM, Vrensen GF (1999) Cell biology of posterior capsular opacification. Eye 13:484–488

    Article  PubMed  Google Scholar 

  36. Bali SJ, Hodge C, Lawless M et al (2012) Early experience with the femtosecond laser for cataract surgery. Ophthalmology 119:891–899

    Article  PubMed  Google Scholar 

  37. Filkorn T, Kovács I, Takács A et al (2012) Comparison of IOL power calculation and refractive outcome after laser refractive cataract surgery with a femtosecond laser versus conventional phacoemulsification. J Refract Surg 28:540–544

    Article  PubMed  Google Scholar 

  38. Cumming JS, Colvard DM, Dell SJ et al (2006) Clinical evaluation of the Crystalens AT-45 accommodating intraocular lens: results of the U.S. Food and Drug Administration clinical trial. J Cataract Refract Surg 32:812–825

    Article  PubMed  Google Scholar 

  39. Koeppl C, Findl O, Menapace R et al (2005) Pilocarpine-induced shift of an accommodating intraocular lens: AT-45 Crystalens. J Cataract Refract Surg 31:1290–1297

    Article  PubMed  Google Scholar 

  40. Menapace R, Findl O, Kriechbaum K, Leydolt-Koeppl C (2007) Accommodating intraocular lenses: a critical review of present and future concepts. Graefes Arch Clin Exp Ophthalmol 245:473–489

    Article  CAS  PubMed  Google Scholar 

  41. Findl O, Hirnschall S, Weber M et al (2013) Influence of rhexis size and shape on postoperative IOL tilt, decentration, and anterior chamber depth. Abstrakt. XXXI. Kongress der ESCRS 2013, Amsterdam

  42. Okada M, Hersh D, Straaten D van der (2012) The effect of centration and circularity in manual capsulorhexis on refractive outcome. AAO-APOA, Chicago

  43. Davison JA (2012) Intraoperative capsule complications during phaco and IOL implantation. ASCRS 2012 Annual Meeting; April 20–24

  44. Sacu S, Findl O, Menapace R, Buehl W (2005) Influence of optic edge design, optic material, and haptic design on capsular bend configuration. J Cataract Refract Surg 31:1888–1894

    Article  PubMed  Google Scholar 

  45. Menapace R, Wirtitsch M, Findl O et al (2005) Effect of anterior capsule polishing on posterior capsule opacification and neodymium: YAG capsulotomy rates: three-year randomized trial. J Cataract Refract Surg 31:2067–2075

    Article  PubMed  Google Scholar 

  46. Davidorf JM (2012) Impact of capsulorhexis morphology on the predictability of IOL power calculations. The American Academy of Ophthalmology Annual Meeting; Nov 21

  47. Lawless M, Bali SJ, Hodge C (2012) Outcomes of FLACS with a diffractive multifical IOL. J Refract Surg 28:859–864

    Article  PubMed  Google Scholar 

  48. Menapace R (2005) Prevention of posterior capsule opacification. In: Kohnen T, Koch DD (Hrsg) Essentials in ophthalmology. Springer, Berlin, S 101–122

  49. Menapace R (2007) Kunstlinsenimplantation und Nachstar. Part I: Genese und Prävention durch Optimierung konventioneller Linsenimplantate und chirurgischer Techniken. Review. Ophthalmologe 104:253–262 (quiz 263–264)

    Article  CAS  PubMed  Google Scholar 

  50. Menapace R (2007) Kunstlinsenimplantation und Nachstar. Part II: Prevention mittels alternativer Implantate and Operationstechniken. Ophthalmologe 104:345–353 (quiz 354–355)

    Article  CAS  PubMed  Google Scholar 

  51. Menapace R (2014) Effect of anterior capsule polishing on after-cataract and posterior capsule opacification. In: Saika S, Werner L, Luvico FL (Hrsg) Lens epithelium and posterior capsular opacification. Springer, Tokyo (im Druck)

  52. Tassignon MJ, De Groot V, Vrensen GF (2002) Bag-in-the-lens implantation of intraocular lenses. J Cataract Refract Surg 28:1182–1188

    Article  PubMed  Google Scholar 

  53. Tassignon MJ, Gobin L, Mathysen D et al (2011) Clinical outcomes of cataract surgery after bag-in-the-lens intraocular lens implantation following ISO standard 11979-7:2006. J Cataract Refract Surg 37:2120–2129

    Article  PubMed  Google Scholar 

  54. Rückl T, Dexl AK, Bachernegg A et al (2013) Femtosecond laser-assisted intrastromal arcuate keratotomy to reduce corneal astigmatism. J Cataract Refract Surg 39:528–538

    Article  PubMed  Google Scholar 

  55. Mingo-Botín D, Muñoz-Negrete FJ, Won Kim HR et al (2010) Comparison of toric intraocular lenses and peripheral corneal relaxing incisions to treat astigmatism during cataract surgery. J Cataract Refract Surg 36:1700–1708

    Article  PubMed  Google Scholar 

  56. Dick HB, Canto AP, Culbertson WW, Schultz T (2013) Femtosecond laser-assisted technique for performing bag-in-the-lens intraocular lens implantation. J Cataract Refract Surg 39:1286–1290

    Article  PubMed  Google Scholar 

  57. Menapace R (2006) Routine posterior optic buttonholing for eradication of posterior capsule opacification in adults: report of 500 consecutive cases. J Cataract Refract Surg 32:929–943

    Article  PubMed  Google Scholar 

  58. Menapace R (2008) Posterior capsulorhexis combined with optic buttonholing: an alternative to standard in-the-bag implantation of sharp-edged intraocular lenses? A critical analysis of 1000 consecutive cases. Graefes Arch Clin Exp Ophthalmol 246:787–801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Menapace R (2010) Mini- and microincision cataract surgery: a critical review of current technologies. Eur Ophthalm Rev 3(2):52–57

    Google Scholar 

  60. Menpace R, Di Nardo S (2010) How to better use fluidics in MICS. In: Alió J, Fine H (Hrsg) Minimizing incisions and maximizing outcomes in cataract surgery. Springer, Berlin, S 57–68

  61. Gimbel HV, Sun R, Ferensowicz M et al (2001) Intraoperative management of posterior capsule tears in phacoemulsification and intraocular lens implantation. Ophthalmology 108:2186–2189

    Article  CAS  PubMed  Google Scholar 

  62. Misra A, Burton RL (2005) Incidence of intraoperative complications during phacoemulsification in vitrectomized and nonvitrectomized eyes: prospective study. J Cataract Refract Surg 31:1011–1014

    Article  PubMed  Google Scholar 

  63. Menapace R (2014) Bilaterale Kataraktchirurgie in einer Sitzung: Unangemessenes Risiko oder Vorteil für Patient und Kostenträger? Referat 28. Kongress der DGII, Bochum

  64. Marques FF, Marques DM, Osher RH, Osher JM (2006) Fate of anterior capsule tears during cataract surgery. J Cataract Refract Surg 32:1638–1642

    Article  PubMed  Google Scholar 

  65. Olali CA, Ahmed S, Gupta M (2007) Surgical outcome following breach kapsulorhexis. Eur J Ophthalmol 17:565–570

    CAS  PubMed  Google Scholar 

  66. Roberts TV, Lawless M, Bali SJ et al (2013) Surgical outcomes and safety of femtosecond laser cataract surgery: a prospective study of 1500 cases. Ophthalmology 120:227–233

    Article  PubMed  Google Scholar 

  67. Unal M, Yücel I, Sarici A et al (2006) Phacoemulsification with topical anesthesia: resident experience. J Cataract Refract Surg 32:1361–1365

    Article  PubMed  Google Scholar 

  68. Hettlich HJ (2010) Lens refilling. Ophthalmologe 107:474–478

    Article  PubMed  Google Scholar 

  69. Stachs O, Langner S, Terwee T et al (2011) In vivo 7.1 T magnetic resonance imaging to assess the lens geometry in rabbit eyes 3 years after lens-refilling surgery. J Cataract Refract Surg 37:749–757

    Article  PubMed  Google Scholar 

  70. Koopmans SA, Terwee T, Kooten TG van (2011) Prevention of capsular opacification after accommodative lens refilling surgery in rabbits. Biomaterials 32:5743–5755

    Article  CAS  PubMed  Google Scholar 

  71. Menapace R (2012) Pseudoexfoliationssyndrom und Kataraktchirurgie – Vermeidung und Behandlung von Komplikationen. Ophthalmologe 109:976–989

    Article  CAS  PubMed  Google Scholar 

  72. Beiko G (2013) Femto cataract: more compelling evidence is needed for femtosecond cataract surgery. Eurotimes 18:18

    Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. R. Menapace und H.B. Dick geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R.M. Menapace or H.B. Dick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menapace, R., Dick, H. Femtosekundenlaser in der Kataraktchirurgie. Ophthalmologe 111, 624–637 (2014). https://doi.org/10.1007/s00347-014-3032-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-014-3032-1

Schlüsselwörter

Keywords

Navigation