Skip to main content
Log in

Hornhauttopografie und Keratokonusdiagnostik mittels Scheimpflug-Fotografie

Corneal topography and keratoconus diagnostics with Scheimpflug photography

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Scheimpflug-Tomografie der Hornhaut ist ein weitverbreitetes nichtinvasives bildgebendes Untersuchungsverfahren.

Fragestellung

Der vorliegende Übersichtsartikel fasst die Prinzipien des Verfahrens und neuere Ergebnisse der Literatur mit einem Schwerpunkt auf die Verwendung zur Keratokonusdiagnostik zusammen.

Material und Methode

Es erfolgte die Auswertung der Literatur, eigener Daten sowie der Meinung von Experten.

Ergebnisse

Die Scheimpflug-Tomografie der Hornhaut liefert neben einer Topografie der Vorder- und Rückfläche auch eine ortsaufgelöste Pachymetrie und Densitometrie der Hornhaut. Die Messungen der auf dem Markt befindlichen Systeme zeichnen sich durch eine hohe Wiederholbarkeit aus, sind aber untereinander wenig austauschbar. Die Scheimpflug-basierte Hornhautomografie ermöglicht durch Kombination von topografischen und pachymetrischen Daten eine trennscharfe Frühdiagnose des Keratokonus.

Schlussfolgerungen

Die Scheimpflug-Tomografie der Hornhaut ist – bedingt durch Vielseitigkeit, hohe Präzision und einfache Handhabung – als das wichtigste bildgebende Verfahren am vorderen Augenabschnitt anzusehen.

Abstract

Background

Corneal Scheimpflug tomography is a commonly used non-invasive imaging technique.

Objectives

This review article summarizes the principles of the technique and recent results from the literature with a focus on keratoconus diagnostics.

Material and methods

Review of the literature, own data and expert opinions.

Results

Corneal Scheimpflug tomography allows topography of the anterior and posterior surfaces as well as spatially resolved pachymetry and densitometry. Measurements obtained with currently available systems are highly reproducible but not interchangeable. Combining topographic and pachymetric data allows a highly sensitive and specific diagnostic modality for the early diagnosis of keratoconus.

Conclusions

Due to the versatility, precision and easy handling, corneal Scheimpflug tomography is the most important imaging technique for the anterior segment of the eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Abou Shousha M, Perez VL, Fraga Santini Canto AP et al (2014) The use of Bowman’s layer vertical topographic thickness map in the diagnosis of keratoconus. Ophthalmology 121:988–993

    Article  Google Scholar 

  2. Ambrósio R Jr, Alonso RS, Luz A et al (2006) Corneal-thickness spatial profile and corneal-volume distribution: tomographic indices to detect keratoconus. J Cataract Refract Surg 32:1851–1859

    Article  PubMed  Google Scholar 

  3. Ambrósio R Jr, Caiado AL, Guerra FP et al (2011) Novel pachymetric parameters based on corneal tomography for diagnosing keratoconus. J Refract Surg 27:753–758

    Article  PubMed  Google Scholar 

  4. Aramberri J, Araiz L, Garcia A et al (2012) Dual versus single Scheimpflug camera for anterior segment analysis: precision and agreement. J Cataract Refract Surg 38:1934–1949

    Article  PubMed  Google Scholar 

  5. Auffarth GU, Wang L, Volcker HE (2000) Keratoconus evaluation using the Orbscan Topography System. J Cataract Refract Surg 26:222–228

    Article  PubMed  CAS  Google Scholar 

  6. Belin MW, Ambrosio R (2013) Scheimpflug imaging for keratoconus and ectatic disease. Indian J Ophthalmol 61:401–406

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bühren J, Kook D, Yoon G et al (2010) Detection of subclinical keratoconus by using corneal anterior and posterior surface aberrations and thickness spatial profiles. Invest Ophthalmol Vis Sci 51:3424–3432

    Article  PubMed  Google Scholar 

  8. Bühren J, Kühne C, Kohnen T (2007) Defining subclinical keratoconus using corneal first-surface higher-order aberrations. Am J Ophthalmol 143:381–389

    Article  PubMed  Google Scholar 

  9. Bühren J, Schäffeler T, Kohnen T (2014) Validation of metrics for the detection of subclinical keratoconus in a new patient collective. J Cataract Refract Surg 40:259–268

    Article  PubMed  Google Scholar 

  10. De Jong T, Sheehan MT, Dubbelman M et al (2013) Shape of the anterior cornea: comparison of height data from 4 corneal topographers. J Cataract Refract Surg 39:1570–1580

    Article  Google Scholar 

  11. De Sanctis U, Loiacono C, Richiardi L et al (2008) Sensitivity and specificity of posterior corneal elevation measured by Pentacam in discriminating keratoconus/subclinical keratoconus. Ophthalmology 115:1534–1539

    Article  Google Scholar 

  12. Dubbelman M, Sicam VA, Van Der Heijde RG (2007) The contribution of the posterior surface to the coma aberration of the human cornea. J Vis 7:10.11–10.18

    Article  PubMed  Google Scholar 

  13. Khachikian SS, Belin MW (2009) Posterior elevation in keratoconus. Ophthalmology 116:816 (author reply 816–817)

    Article  PubMed  Google Scholar 

  14. Koch DD, Jenkins RB, Weikert MP et al (2013) Correcting astigmatism with toric intraocular lenses: effect of posterior corneal astigmatism. J Cataract Refract Surg 39:1803–1809

    Article  PubMed  Google Scholar 

  15. Langenbucher A, Gusek-Schneider GC, Kus MM et al (1999) Keratokonus-Screening mit Wellenfrontparametern auf der Basis topographischer Höhendaten. Klin Monatsbl Augenheilkd 214:217–223

    Article  PubMed  CAS  Google Scholar 

  16. Maeda N, Klyce SD, Smolek MK et al (1994) Automated keratoconus screening with corneal topography analysis. Invest Ophthalmol Vis Sci 35:2749–2757

    PubMed  CAS  Google Scholar 

  17. Mcalinden C, Khadka J, Pesudovs K (2011) A comprehensive evaluation of the precision (repeatability and reproducibility) of the Oculus Pentacam HR. Invest Ophthalmol Vis Sci 52:7731–7737

    Article  PubMed  Google Scholar 

  18. Muftuoglu O, Ayar O, Ozulken K et al (2013) Posterior corneal elevation and back difference corneal elevation in diagnosing forme fruste keratoconus in the fellow eyes of unilateral keratoconus patients. J Cataract Refract Surg 39:1348–1357

    Article  PubMed  Google Scholar 

  19. Pflugfelder SC, Liu Z, Feuer W et al (2002) Corneal thickness indices discriminate between keratoconus and contact lens-induced corneal thinning. Ophthalmology 109:2336–2341

    Article  PubMed  Google Scholar 

  20. Quisling S, Sjoberg S, Zimmerman B et al (2006) Comparison of Pentacam and Orbscan IIz on posterior curvature topography measurements in keratoconus eyes. Ophthalmology 113:1629–1632

    Article  PubMed  Google Scholar 

  21. Rabinowitz YS (1995) Videokeratographic indices to aid in screening for keratoconus. J Refract Surg 11:371–379

    PubMed  CAS  Google Scholar 

  22. Rao SN, Raviv T, Majmudar PA et al (2002) Role of Orbscan II in screening keratoconus suspects before refractive corneal surgery. Ophthalmology 109:1642–1646

    Article  PubMed  Google Scholar 

  23. Reddy JC, Rapuano CJ, Cater JR et al (2014) Comparative evaluation of dual Scheimpflug imaging parameters in keratoconus, early keratoconus, and normal eyes. J Cataract Refract Surg 40:582–592

    Article  PubMed  Google Scholar 

  24. Reinstein DZ, Gobbe M, Archer TJ et al (2010) Epithelial, stromal, and total corneal thickness in keratoconus: three-dimensional display with artemis very-high frequency digital ultrasound. J Refract Surg 26:259–271

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schwiegerling J, Greivenkamp JE, Miller JM (1995) Representation of videokeratoscopic height data with Zernike polynomials. J Opt Soc Am A 12:2105–2113

    Article  CAS  Google Scholar 

  26. Silverman RH, Urs R, Roychoudhury A et al (2014) Epithelial remodeling as basis for machine-based identification of keratoconus. Invest Ophthalmol Vis Sci 55:1580–1587

    Article  PubMed  PubMed Central  Google Scholar 

  27. Souza MB, Medeiros FW, Souza DB et al (2010) Evaluation of machine learning classifiers in keratoconus detection from orbscan II examinations. Clinics (Sao Paulo) 65:1223–1228

  28. Szalai E, Berta A, Hassan Z et al (2012) Reliability and repeatability of swept-source Fourier-domain optical coherence tomography and Scheimpflug imaging in keratoconus. J Cataract Refract Surg 38:485–494

    Article  PubMed  Google Scholar 

  29. Villavicencio O, Belin MW, Ambrosio R Jr et al (2014) Corneal pachymetry: new ways to look at an old measurement. J Cataract Refract Surg 40:695–701

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. J. Bühren gibt an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bühren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bühren, J. Hornhauttopografie und Keratokonusdiagnostik mittels Scheimpflug-Fotografie. Ophthalmologe 111, 920–926 (2014). https://doi.org/10.1007/s00347-013-2962-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-013-2962-3

Schlüsselwörter

Keywords

Navigation