Skip to main content
Log in

Comparison of multiparametric and biparametric MRI of the prostate: are gadolinium-based contrast agents needed for routine examinations?

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

To investigate, if and how omitting gadolinium-based contrast agents (GBCA) and dynamic contrast-enhanced imaging (DCE) influences diagnostic accuracy and tumor detection rates of prostate MRI.

Methods

In this retrospective study, 236 patients were included. The results of biparametric (bpMRI) and multiparametric magnetic resonance imaging (mpMRI) were compared using the PI-RADS version 2 scoring system. The distribution of lesions to PIRADS score levels, tumor detection rates, diagnostic accuracy and RoC analysis were calculated and compared to the results of histopathological analysis or 5-year follow-up for benign findings.

Results

Omitting DCE changed PI-RADS scores in 9.75% of patients, increasing the number of PI-RADS 3 scores by 8.89% when compared to mpMRI. No change of more than one score level was observed. BpMRI did not show significant differences in diagnostic accuracy or tumor detection rates. (AuC of 0.914 vs 0.917 in ROC analysis). Of 135 prostate carcinomas (PCa), 94.07% were scored identically, and 5.93% were downgraded only from PI-RADS 4 to PI-RADS 3 by bpMRI. All of them were low-grade PCa with Gleason Score 6 or 7a. No changes were observed for PCa ≥ 7b.

Conclusion

Omitting DCE did not lead to significant differences in diagnostic accuracy or tumor detection rates when using the PI-RADS 2 scoring system. According to these data, it seems reasonable to use a biparametric approach for initial routine prostate MRI. This could decrease examination time and reduce costs without significantly lowering the diagnostic accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, Rouviere O, Logager V, Futterer JJ, European Society of Urogenital R (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22(4):746–757. https://doi.org/10.1007/s00330-011-2377-y

    Article  PubMed  PubMed Central  Google Scholar 

  2. Auer T, Edlinger M, Bektic J, Nagele U, Herrmann T, Schafer G, Aigner F, Junker D (2017) Performance of PI-RADS version 1 versus version 2 regarding the relation with histopathological results. World J Urol 35(5):687–693. https://doi.org/10.1007/s00345-016-1920-5

    Article  CAS  PubMed  Google Scholar 

  3. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, Margolis D, Schnall MD, Shtern F, Tempany CM, Thoeny HC, Verma S (2016) PI-RADS prostate imaging-reporting and data system: 2015, version 2. Eur Urol 69(1):16–40. https://doi.org/10.1016/j.eururo.2015.08.052

    Article  PubMed  Google Scholar 

  4. Girouin N, Mege-Lechevallier F, Tonina Senes A, Bissery A, Rabilloud M, Marechal JM, Colombel M, Lyonnet D, Rouviere O (2007) Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable? Eur Radiol 17(6):1498–1509. https://doi.org/10.1007/s00330-006-0478-9

    Article  PubMed  Google Scholar 

  5. Futterer JJ, Heijmink SW, Scheenen TW, Veltman J, Huisman HJ, Vos P, Hulsbergen-Van de Kaa CA, Witjes JA, Krabbe PF, Heerschap A, Barentsz JO (2006) Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241(2):449–458. https://doi.org/10.1148/radiol.2412051866

    Article  PubMed  Google Scholar 

  6. Tanimoto A, Nakashima J, Kohno H, Shinmoto H, Kuribayashi S (2007) Prostate cancer screening: the clinical value of diffusion-weighted imaging and dynamic MR imaging in combination with T2-weighted imaging. J Magn Reson Imaging 25(1):146–152. https://doi.org/10.1002/jmri.20793

    Article  PubMed  Google Scholar 

  7. Yoshimitsu K, Kiyoshima K, Irie H, Tajima T, Asayama Y, Hirakawa M, Ishigami K, Naito S, Honda H (2008) Usefulness of apparent diffusion coefficient map in diagnosing prostate carcinoma: correlation with stepwise histopathology. J Magn Reson Imaging 27(1):132–139. https://doi.org/10.1002/jmri.21181

    Article  PubMed  Google Scholar 

  8. Kim CK, Park BK, Lee HM, Kwon GY (2007) Value of diffusion-weighted imaging for the prediction of prostate cancer location at 3T using a phased-array coil: preliminary results. Invest Radiol 42(12):842–847. https://doi.org/10.1097/RLI.0b013e3181461d21

    Article  PubMed  Google Scholar 

  9. Greer MD, Shih JH, Lay N, Barrett T, Kayat Bittencourt L, Borofsky S, Kabakus IM, Law YM, Marko J, Shebel H, Mertan FV, Merino MJ, Wood BJ, Pinto PA, Summers RM, Choyke PL, Turkbey B (2017) Validation of the dominant sequence paradigm and role of dynamic contrast-enhanced imaging in PI-RADS version 2. Radiology 285(3):859–869. https://doi.org/10.1148/radiol.2017161316

    Article  PubMed  Google Scholar 

  10. Puech P, Sufana-Iancu A, Renard B, Lemaitre L (2013) Prostate MRI: can we do without DCE sequences in 2013? Diagn Interv Imaging 94(12):1299–1311. https://doi.org/10.1016/j.diii.2013.09.010

    Article  CAS  PubMed  Google Scholar 

  11. Stanzione A, Imbriaco M, Cocozza S, Fusco F, Rusconi G, Nappi C, Mirone V, Mangiapia F, Brunetti A, Ragozzino A, Longo N (2016) Biparametric 3T Magnetic Resonance Imaging for prostatic cancer detection in a biopsy-naive patient population: a further improvement of PI-RADS v2? Eur J Radiol 85(12):2269–2274. https://doi.org/10.1016/j.ejrad.2016.10.009

    Article  PubMed  Google Scholar 

  12. Scialpi M, Prosperi E, D’Andrea A, Martorana E, Malaspina C, Palumbo B, Orlandi A, Falcone G, Milizia M, Mearini L, Aisa MC, Scialpi P, Bianchi G, Sidoni A, C DED (2017) Biparametric versus multiparametric MRI with non-endorectal coil at 3T in the detection and localization of prostate cancer. Anticancer Res 37(3):1263–1271. https://doi.org/10.21873/anticanres.11443

    Article  PubMed  Google Scholar 

  13. Mussi TC, Martins T, Garcia RG, Filippi RZ, Lemos GC, Baroni RH (2017) Are dynamic contrast-enhanced images necessary for prostate cancer detection on multiparametric magnetic resonance imaging? Clin Genitourin Cancer 15(3):e447–e454. https://doi.org/10.1016/j.clgc.2016.10.001

    Article  PubMed  Google Scholar 

  14. Sanz-Requena R, Marti-Bonmati L, Perez-Martinez R, Garcia-Marti G (2016) Dynamic contrast-enhanced case-control analysis in 3T MRI of prostate cancer can help to characterize tumor aggressiveness. Eur J Radiol 85(11):2119–2126. https://doi.org/10.1016/j.ejrad.2016.09.022

    Article  PubMed  Google Scholar 

  15. Hansford BG, Peng Y, Jiang Y, Vannier MW, Antic T, Thomas S, McCann S, Oto A (2015) Dynamic contrast-enhanced MR imaging curve-type analysis: is it helpful in the differentiation of prostate cancer from healthy peripheral zone? Radiology 275(2):448–457. https://doi.org/10.1148/radiol.14140847

    Article  PubMed  Google Scholar 

  16. Kuhl CK, Bruhn R, Kramer N, Nebelung S, Heidenreich A, Schrading S (2017) Abbreviated biparametric prostate MR imaging in men with elevated prostate-specific antigen. Radiology 285(2):493–505. https://doi.org/10.1148/radiol.2017170129

    Article  PubMed  Google Scholar 

  17. Di Campli E, Delli Pizzi A, Seccia B, Cianci R, d’Annibale M, Colasante A, Cinalli S, Castellan P, Navarra R, Iantorno R, Gabrielli D, Buffone A, Caulo M, Basilico R (2018) Diagnostic accuracy of biparametric vs multiparametric MRI in clinically significant prostate cancer: comparison between readers with different experience. Eur J Radiol 101:17–23. https://doi.org/10.1016/j.ejrad.2018.01.028

    Article  PubMed  Google Scholar 

  18. De Visschere P, Lumen N, Ost P, Decaestecker K, Pattyn E, Villeirs G (2017) Dynamic contrast-enhanced imaging has limited added value over T2-weighted imaging and diffusion-weighted imaging when using PI-RADSv2 for diagnosis of clinically significant prostate cancer in patients with elevated PSA. Clin Radiol 72(1):23–32. https://doi.org/10.1016/j.crad.2016.09.011

    Article  PubMed  Google Scholar 

  19. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275(3):772–782. https://doi.org/10.1148/radiol.15150025

    Article  PubMed  Google Scholar 

  20. Fine SW, Amin MB, Berney DM, Bjartell A, Egevad L, Epstein JI, Humphrey PA, Magi-Galluzzi C, Montironi R, Stief C (2012) A contemporary update on pathology reporting for prostate cancer: biopsy and radical prostatectomy specimens. Eur Urol 62(1):20–39. https://doi.org/10.1016/j.eururo.2012.02.055

    Article  PubMed  Google Scholar 

  21. Delongchamps NB, Rouanne M, Flam T, Beuvon F, Liberatore M, Zerbib M, Cornud F (2011) Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int 107(9):1411–1418. https://doi.org/10.1111/j.1464-410X.2010.09808.x

    Article  PubMed  Google Scholar 

  22. Rosenkrantz AB, Verma S, Choyke P, Eberhardt SC, Eggener SE, Gaitonde K, Haider MA, Margolis DJ, Marks LS, Pinto P, Sonn GA, Taneja SS (2016) Prostate magnetic resonance imaging and magnetic resonance imaging targeted biopsy in patients with a prior negative biopsy: a consensus statement by AUA and SAR. J Urol 196(6):1613–1618. https://doi.org/10.1016/j.juro.2016.06.079

    Article  PubMed  PubMed Central  Google Scholar 

  23. Steinkohl F, Gruber L, Bektic J, Nagele U, Aigner F, Herrmann TRW, Rieger M, Junker D (2018) Retrospective analysis of the development of PIRADS 3 lesions over time: when is a follow-up MRI reasonable? World J Urol 36(3):367–373. https://doi.org/10.1007/s00345-017-2135-0

    Article  PubMed  Google Scholar 

  24. Sheridan AD, Nath SK, Syed JS, Aneja S, Sprenkle PC, Weinreb JC, Spektor M (2018) Risk of clinically significant prostate cancer associated with prostate imaging reporting and data system category 3 (Equivocal) lesions identified on multiparametric prostate MRI. AJR Am J Roentgenol 210(2):347–357. https://doi.org/10.2214/AJR.17.18516

    Article  PubMed  Google Scholar 

  25. Krishna S, McInnes M, Lim C, Lim R, Hakim SW, Flood TA, Schieda N (2017) Comparison of prostate imaging reporting and data system versions 1 and 2 for the detection of peripheral zone Gleason Score 3 + 4 = 7 Cancers. AJR Am J Roentgenol 209(6):W365–W373. https://doi.org/10.2214/AJR.17.17964

    Article  PubMed  Google Scholar 

  26. Tan CH, Hobbs BP, Wei W, Kundra V (2015) Dynamic contrast-enhanced MRI for the detection of prostate cancer: meta-analysis. AJR Am J Roentgenol 204(4):W439–448. https://doi.org/10.2214/AJR.14.13373

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jung JW, Kang HR, Kim MH, Lee W, Min KU, Han MH, Cho SH (2012) Immediate hypersensitivity reaction to gadolinium-based MR contrast media. Radiology 264(2):414–422. https://doi.org/10.1148/radiol.12112025

    Article  PubMed  Google Scholar 

  28. Grune F, Schrappe M, Basten J, Wenchel HM, Tual E, Stutzer H, Cologne Quality Control N (2004) Phlebitis rate and time kinetics of short peripheral intravenous catheters. Infection 32(1):30–32. https://doi.org/10.1007/s15010-004-1037-4

    Article  CAS  PubMed  Google Scholar 

  29. Deray G, Rouviere O, Bacigalupo L, Maes B, Hannedouche T, Vrtovsnik F, Rigothier C, Billiouw JM, Campioni P, Ferreiros J, Devos D, Alison D, Glowacki F, Boffa JJ, Marti-Bonmati L (2013) Safety of meglumine gadoterate (Gd-DOTA)-enhanced MRI compared to unenhanced MRI in patients with chronic kidney disease (RESCUE study). Eur Radiol 23(5):1250–1259. https://doi.org/10.1007/s00330-012-2705-x

    Article  PubMed  Google Scholar 

  30. Gulani V, Calamante F, Shellock FG, Kanal E, Reeder SB, International Society for Magnetic Resonance in M (2017) Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol 16(7):564–570. https://doi.org/10.1016/S1474-4422(17)30158-8

    Article  PubMed  Google Scholar 

  31. Ullrich T, Quentin M, Oelers C, Dietzel F, Sawicki LM, Arsov C, Rabenalt R, Albers P, Antoch G, Blondin D, Wittsack HJ, Schimmoller L (2017) Magnetic resonance imaging of the prostate at 1.5 versus 3.0T: a prospective comparison study of image quality. Eur J Radiol 90:192–197. https://doi.org/10.1016/j.ejrad.2017.02.044

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DJ protocol and project development, data analysis, manuscript writing. FS manuscript writing and editing, data analysis. VF data collection, manuscript editing. JB data collection, data management. TT data collection, data management. FA project development, data collection. TRWH manuscript editing, interpretation of data. MR manuscript writing, critical revision of the manuscript. UN manuscript writing and editing, interpretation of data.

Corresponding author

Correspondence to Daniel Junker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest, nothing to declare.

Research including human participants and ethical approval

This is a retrospective study. Institutional review board approval was granted by means of a general waiver for studies with retrospective data analysis (Ethikkommission, Med. Univ. Innsbruck; 2009-02-20). All procedures performed were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junker, D., Steinkohl, F., Fritz, V. et al. Comparison of multiparametric and biparametric MRI of the prostate: are gadolinium-based contrast agents needed for routine examinations?. World J Urol 37, 691–699 (2019). https://doi.org/10.1007/s00345-018-2428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-018-2428-y

Keywords

Navigation