Skip to main content
Log in

Shockwave lithotripsy: techniques for improving outcomes

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Objectives

Shock wave lithotripsy (SWL) remains the only effective truly non-invasive treatment for nephrolithiasis. While single-treatment success rates may not equal those of ureteroscopy and percutaneous nephrolithotomy, it has an important role to play in the management of stones. In this paper, we outline the latest evidence-based recommendations for maximizing SWL outcomes, while minimizing complications.

Materials and methods

A comprehensive review of the current literature was performed regarding maximizing SWL outcomes.

Results

Several different considerations need to be made regarding patient selection with respect to body habitus, body mass index, anatomical location and underlying urologic abnormalities. Stone composition and stone density (Hounsfield Units) are important prognostic variables. Patient positioning is critical to allow for adequate stone localization with either fluoroscopy or ultrasound. Coupling should be optimized with a low viscosity gel applied to the therapy head first and patient movement should be limited. SWL energy should be increased slowly and shockwave rates of 60 or 90 Hz should be used. Medical expulsive therapy with alpha-blockers after SWL treatment has shown benefit, particularly with stones greater than 10 mm.

Conclusion

While single-treatment success rates may not equal those of ureteroscopy or percutaneous nephrolithotomy, with proper patient selection, optimization of SWL technique, and use of adjunctive treatment after SWL, success rates can be maximized while further reducing the already low rate of serious complications. SWL remains an excellent treatment option for calculi even in 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chaussy CG, Fuchs GJ (1989) Current state and future developments of noninvasive treatment of human urinary stones with extracorporeal shock wave lithotripsy. J Urol 141:782

    Article  CAS  PubMed  Google Scholar 

  2. Kerbl K, Rehman J, Landman J et al (2002) Current management of urolithiasis: progress or regress? J Endourol 16:281

    Article  PubMed  Google Scholar 

  3. Lantz AG, McKay J, Ordon M, Pace KT, Monga M, Honey RJ (2016) Shockwave lithotripsy practice pattern variations among and between american and canadian urologists: in support of guidelines. J Endourol 30(8):918–922

    Article  PubMed  Google Scholar 

  4. Lee C, Best SL, Ugarte R et al (2008) Impact of learning curve on efficacy of shock wave lithotripsy. Radiol Technol 80(1):20–24

    PubMed  Google Scholar 

  5. Tailly GG (2013) Extracorporeal shock wave lithotripsy today. Indian J Urol 29:200–207

    Article  PubMed  PubMed Central  Google Scholar 

  6. Knoll T, Fritsche HM, Rassweiler JJ (2011) Medical and economic aspects of extracorporeal shock wave lithotripsy. Aktuelle Urol 42:363–367

    Article  CAS  PubMed  Google Scholar 

  7. Kohrmann KU, Rassweiler JJ, Manning M et al (1995) The clinical introduction of a third generation lithotriptor: modulith SL20. J Urol 153:1379

    Article  CAS  PubMed  Google Scholar 

  8. Tan YM, Yip SK, Chong TW et al (2002) Clinical experience and results of ESWL treatment for 3,093 urinary calculi with the StorzModultih SL20 lithotriptor at the Singapore General Hospital. Scand J Urol Nephrol 36:363

    Article  CAS  PubMed  Google Scholar 

  9. Lam HS, Lingeman JE, Barron M et al (1992) Staghorn calculi: analysis of treatment results between initial percutaneous nephrostolithotomy and extracorporeal shock wave lithotripsy monotherapy with reference to surface area. J Urol 147(5):1219–1225

    Article  CAS  PubMed  Google Scholar 

  10. Wiesenthal JD, Ghiculete D, Ray AA et al (2011) A clinical nomogram to predict the successful shock wave lithotripsy of renal and ureteral calculi. J Urol 186:556–562

    Article  PubMed  Google Scholar 

  11. Patel T, Kozakowski K, Hruby G et al (2009) Skin to stone distance is an independent predictor of stone-free status following shockwave lithotripsy. J Endourol 23:1383

    Article  PubMed  Google Scholar 

  12. Gupta NP, Ansari MS, Kesarvani P et al (2005) Role of computed tomography with no contrast medium enhancement in predicting the outcome of extracorporeal shock wave lithotripsy for urinary calculi. BJU Int 95:1285–1288

    Article  PubMed  Google Scholar 

  13. Joseph P, Mandal AK, Singh SK et al (2002) Computerized tomography attenuation value of renal calculus: can it predict successful fragmentation of the calculus by extracorporeal shock wave lithotripsy? A preliminary study. J Urol 167:1968–1971

    Article  PubMed  Google Scholar 

  14. El-Nahas AR, El-Assmy AM, Mansour O et al (2007) A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution non-contrast computed tomography. Eur Urol 51:1688–1694

    Article  PubMed  Google Scholar 

  15. Ouzaid I, Al-qahtani S, Dominique S et al (2012) A 970 Hounsfield units (HU) threshold of kidney stone density on non-contrast computed tomography (NCCT) improves patients’ selection for extracorporeal shockwave lithotripsy (ESWL): evidence from a prospective study. BJU Int 110:E438–E442

    Article  PubMed  Google Scholar 

  16. Albala DM, Assimos DG, Clayman RV et al (2001) Lower pole I: a prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. J Urol 166(6):2072–2080

    Article  CAS  PubMed  Google Scholar 

  17. Collado Serra A, Huguet PŽrez J, Monreal Garc’a de Vicu-a F et al (1999) Renal hematoma as a complication of extracorporeal shock wave lithotripsy. Scand J Urol Nephrol 33:171–175

    Article  CAS  PubMed  Google Scholar 

  18. Lee HY, Yang YH, Shen JT et al (2013) Risk factors survey for extracorporeal shockwave lithotripsy-induced renal hematoma. J Endourol 27:2763–2767

    Google Scholar 

  19. Klingler HC, Kramer G, Lodde M et al (2003) Stone treatment and coagulopathy. Eur Urol 43:75

    Article  CAS  PubMed  Google Scholar 

  20. Razvi H, Fuller A, Nott L et al (2012) Risk factors for perinephric hematoma formation after shockwave lithotripsy: matched case-control analysis. J Endourol 26:1478–1482

    Article  PubMed  Google Scholar 

  21. Chaussy CG, Tiselius H (2012) What you should know about extracorporeal shock wave lithotripsy and how to improve your performance. In: Talati JJ, Tiselius HG, Albala D, Ye Z (eds) Urolithiasis. Springer, London, pp 383–393

    Chapter  Google Scholar 

  22. Tiselius HG, Chaussy CG (2012) Aspects on how extracorporeal shockwave lithotripsy should be carried out in order to be maximally effective. Urol Res 40:433–446

    Article  PubMed  Google Scholar 

  23. Bohris C, Roosen A, Dickmann M et al (2012) Monitoring the coupling of the lithotripter head with skin during routine shock wave lithotripsy with a surveillance camera. J Urol 187:157–163

    Article  PubMed  Google Scholar 

  24. Phipps S, Stephenson C, Tolley D (2013) Extracorporeal shockwave lithotripsy to distal ureteric stones: the transgluteal approach significantly increases stone-free rates. BJU Int 112:E129–E133

    Article  PubMed  Google Scholar 

  25. Paterson R, Lifshitz DA, Lingeman JE et al (2002) Stone fragmentation during shock wave lithotripsy is improved by slowing the shock wave rate: studies with a new animal model. J Urol 168:2211–2215

    Article  PubMed  Google Scholar 

  26. Pishchalnikov YA, Neuks JS, VonDerHaar RJ, Pishchalnikova IV, Williams JC Jr, McAteer JA (2006) Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shockwave energy. J Urol 176(6 Pt 1):2706–2710

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jain A, Shah TK (2007) Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy. Eur Urol 51(6):1680–1686

    Article  PubMed  Google Scholar 

  28. Weaver J, Monga M (2014) Extracorporeal shockwave lithotripsy for upper tract urolithiasis. Curr Opin Urol 24(2):168–172

    Article  PubMed  Google Scholar 

  29. Tiselius HG (2008) How efficient is extracorporeal shockwave lithotripsy with modern lithotripters for removal of ureteral stones? J Endourol 22:249–255

    Article  PubMed  Google Scholar 

  30. Evan AP, McAteer JA, Connors BA et al (2007) Renal injury during shock wave lithotripsy is significantly reduced by slowing the rate of shock wave delivery. BJU Int 100:624–627

    Article  PubMed  Google Scholar 

  31. Seitz C, Fritsche HM, Siebert T et al (2009) Novel electromagnetic lihotriptor for upper tract stones with and without ureteral stent. J Urol 182:1424–1429

    Article  PubMed  Google Scholar 

  32. Tiselius HG (1991) Anesthesia-free in situ extracorporeal shock wave lithotripsy of ureteral stones. J Urol 146:8–12

    Article  CAS  PubMed  Google Scholar 

  33. Rasweiller JJ, Knoll T, Kohrmann KU, McAteer JA, Lingeman JE, Cleveland RO, Bailey MR, Chaussy C (2011) Shock wave technology and application: an update. Eur Urol 59(5):784–796

    Article  Google Scholar 

  34. Handa RK, Bailey MR, Paun M et al (2009) Pretreatment with low-energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal injury. BJU Int 103:1270–1274

    Article  PubMed  Google Scholar 

  35. Handa RK, McAteer JA, Connors B et al (2012) Optimising an escalating shockwave amplitude treatment strategy to protect the kidney from injury during shockwave lithotripsy. BJU Int 110:E1041–E1047

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bohris C, Bayer T, Gumpinger R (2010) Ultrasound monitoring of kidney stone extracorporeal shock wave lithotripsy with an external transducer: does fatty tissue cause image distortions that affect stone comminution? J Endourol 24:81–88

    Article  PubMed  Google Scholar 

  37. Lingeman JE, McAteer JA, Gnessin E et al (2009) Shock wave lithotripsy: advances in technology and technique. Nat Rev Urol 6:660–670

    Article  PubMed  PubMed Central  Google Scholar 

  38. Paterson RF, Lifshitz DA, Kuo R et al (2002) Shock wave lithotripsy monotherapy for renal calculi. Int Braz J Urol 28:291–301

    PubMed  Google Scholar 

  39. Tiselius HG, Aronsen T, Bohgard S et al (2010) Is high diuresis an important prerequisite for successful SWL-disintegration of ureteral stones? Urol Res 38:143–146

    Article  PubMed  Google Scholar 

  40. Perks AE, Schuler TD, Lee J et al (2008) Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology 72:765–769

    Article  PubMed  Google Scholar 

  41. Thomas R, Cass AS (1993) Extracorporeal shock wave lithotripsy in morbidly obese patients. J Urol 150:30–32

    Article  CAS  PubMed  Google Scholar 

  42. Vakalopoulos I (2009) Development of a mathematical model to predict extracorporeal shockwave lithotripsy outcome. J Endourol 23:891–897

    Article  PubMed  Google Scholar 

  43. Pace KT, Ghiculete D, Harju M et al (2005) Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol 174:595–599

    Article  PubMed  Google Scholar 

  44. Honey RJ, Schuler TD, Ghiculete D et al (2009) A randomized, double-blind trial to compare shock wave frequencies of 60 and 120 shocks per minute for upper ureteral stones. J Urol 182:1418–1423

    Article  PubMed  Google Scholar 

  45. Davenport K, Minervini A, Keoghane S et al (2006) Does rate matter? The results of a randomized controlled trial of 60 versus 120 shocks per minute for shock wave lithotripsy of renal calculi. J Urol 176:2055–2058

    Article  PubMed  Google Scholar 

  46. Madbouly K, El-Tiraifi AM, Seida M et al (2005) Slow versus fast shock wave lithotripsy rate for urolithiasis: a prospective randomized study. J Urol 173:127–130

    Article  PubMed  Google Scholar 

  47. Yilmaz E, Batislam E, Basar M et al (2005) Optimal frequency in extracorporeal shock wave lithotripsy: prospective randomized study. Urology 66:1160–1164

    Article  PubMed  Google Scholar 

  48. Li K, Lin T, Zhang C et al (2013) Optimal frequency of shock wave lithotripsy in urolithiasis treatment: a systematic review and meta-analysis of randomized controlled trials. J Urol 190:1260–1267

    Article  PubMed  Google Scholar 

  49. Kato Y, Yamaguchi S, Hori J et al (2006) Improvement of stone comminution by slow delivery rate of shock waves in extracorporeal lithotripsy. Int J Urol 13:1461–1465

    Article  PubMed  Google Scholar 

  50. Chacko J, Moore M, Sankey N et al (2006) Does a slower treatment rate impact the efficacy of extracorporeal shock wave lithotripsy for solitary kidney or ureteral stones? J Urol 175:1370–1374

    Article  PubMed  Google Scholar 

  51. Gillitzer R, Neisius A, Wšllner J et al (2009) Low-frequency extracorporeal shock wave lithotripsy improves renal pelvic stone disintegration in a pig model. BJU Int 103:1284–1288

    Article  PubMed  Google Scholar 

  52. Schuler TD, Shahani R, Honey RJ et al (2009) Medical expulsive therapy as an adjunct to improve shockwave lithotripsy outcomes: a systematic review and meta-analysis. J Endourol 23:387–393

    Article  PubMed  Google Scholar 

  53. Seitz C, Liatsikos E, Porpiglia F et al (2009) Medical therapy to facilitate the passage of stones: what is the evidence? Eur Urol 56:455–471

    Article  PubMed  Google Scholar 

  54. Pace KT, Tariq N, Dyer SJ et al (2001) Mechanical percussion, inversion and diuresis for residual lower pole fragments after shock wave lithotripsy: a prospective, single blind, randomized controlled trial. J Urol 166(6):2065–2071

    Article  CAS  PubMed  Google Scholar 

  55. Leong W, Liong M, Liong Y et al (2014) Does simultaneous inversion during extracorporeal shock wave lithotripsy improve stone clearance: a long-term, prospective, single-blind, randomized controlled study. Urology 83:40–44

    Article  PubMed  Google Scholar 

  56. Liu LR, Li QJ, Wei Q et al (2013) Percussion, diuresis, and inversion therapy for the passage of lower pole kidney stones following shock wave lithotripsy. Cochrane Database Syst Rev 12:CD008569

    Google Scholar 

  57. Albanis S, Ather HM, Papatsoris AG et al (2009) Inversion, hydration and diuresis during extracorporeal shock wave lithotripsy: does it improve the stone-free rate for lower pole stone clearance? Urol Int 83:211–216

    Article  PubMed  Google Scholar 

  58. Tiselius HG (2003) Epidemiology and medical management of stone disease. BJU Int 91:758–767

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth T. Pace.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kroczak, T., Scotland, K.B., Chew, B. et al. Shockwave lithotripsy: techniques for improving outcomes. World J Urol 35, 1341–1346 (2017). https://doi.org/10.1007/s00345-017-2056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-017-2056-y

Keywords

Navigation