Skip to main content

Advertisement

Log in

Increasing prevalence of ciprofloxacin resistance in extended-spectrum-β-lactamase-producing Escherichia coli urinary isolates

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

To describe the incidence and drug susceptibility profiles of uropathogenic extended-spectrum-β-lactamase-producing Escherichia coli (ESBL-EC) during a 10-year period and to identify differences in resistance patterns between urological and non-urological ESBL-EC isolates.

Methods

Retrospective analysis of 191,564 urine samples obtained during 2001 to 2010 at the University Hospital Basel, Switzerland. The computerized database of the Clinical Microbiology Laboratory and the Division of Infectious Diseases and Hospital Epidemiology was used to identify ESBL-EC positive urine samples. ESBL-EC isolates were stratified according their origin into two groups: Urology and non-Urology isolates.

Results

The rate of ESBL-EC positive urine samples increased significantly during the study period (3 in 2001 compared to 55 in 2010, p < 0.05). The most active agents were imipenem, meropenem, and fosfomycin (100 %), followed by amikacin (99.1 %) and nitrofurantoin (84 %). The least active substances were ampicillin-clavulanate (20 %), sulfamethoxazole (28 %), and ciprofloxacin (29.6 %). ESBL-EC isolates from urological and non-urological patients showed similar susceptibility profiles. However, ESBL-EC isolates from urological patients were significantly less susceptible to ciprofloxacin compared to non-urological isolates (14.7 vs. 32.7 %, p < 0.05).

Conclusions

The rate of urinary ESBL-EC isolates is increasing. Their susceptibility to nitrofurantoin, fosfomycin, and carbapenems is excellent, whereas ampicillin-clavulanate, sulfamethoxazole, and ciprofloxacin demonstrate only low susceptibility. In particular, the use of ciprofloxacin should be strictly avoided in urologic patients with suspicion for an ESBL-EC urinary tract infection as well as routine antibiotic prophylaxis prior to urological interventions if not explicit indicated by current international guidelines or local resistance patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ronald A (2002) The etiology of urinary tract infection: traditional and emerging pathogens. Am J Med 113(Suppl 1A):14S–19S

    Article  PubMed  Google Scholar 

  2. Gupta K, Hooton TM, Stamm WE (2001) Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections. Ann Intern Med 135:41–50

    Article  PubMed  CAS  Google Scholar 

  3. Naber KG, Schito G, Botto H, Palou J, Mazzei T (2008) Surveillance study in Europe and Brazil on clinical aspects and Antimicrobial Resistance Epidemiology in Females with Cystitis (ARESC): implications for empiric therapy. Eur Urol 54:1164–1175

    Article  PubMed  Google Scholar 

  4. Geser N, Stephan R, Kuhnert P, Zbinden R, Kaeppeli U, Cernela N, Haechler H (2011) Fecal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae in swine and cattle at slaughter in Switzerland. J Food Prot 74:446–449

    Article  PubMed  CAS  Google Scholar 

  5. Li B, Sun JY, Liu QZ, Han LZ, Huang XH, Ni YX (2011) High prevalence of CTX-M beta-lactamases in faecal Escherichia coli strains from healthy humans in Fuzhou, China. Scand J Infect Dis 43:170–174

    Article  PubMed  CAS  Google Scholar 

  6. Pitout JD, Laupland KB (2008) Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8:159–166

    Article  PubMed  CAS  Google Scholar 

  7. Ben-Ami R, Rodriguez-Bano J, Arslan H, Pitout JD, Quentin C, Calbo ES, Azap OK, Arpin C, Pascual A, Livermore DM, Garau J, Carmeli Y (2009) A multinational survey of risk factors for infection with extended-spectrum beta-lactamase-producing enterobacteriaceae in nonhospitalized patients. Clin Infect Dis 49:682–690

    Article  PubMed  Google Scholar 

  8. Talbot GH, Bradley J, Edwards JE Jr, Gilbert D, Scheld M, Bartlett JG (2006) Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin Infect Dis 42:657–668

    Article  PubMed  Google Scholar 

  9. Grabe M, Bjerklund-Johansen TE, Botto H, Wullt B, Cek M, Naber KG, Pickard RS, Tenke P, Wagenlehner F (2012) Guidelines on urological infections. Eur Assoc Urol. http://www.uroweb.org

  10. Wolf JS, Bennet CJ, Dmochowski RR, Hollenbeck BK, Pearle MS, Schaeffer AJ (2012) Best practice policy statement on urologic surgery antimicrobial prophylaxis. Am Urol Assoc. http://www.auanet.org/content/clinical-practice-guidelines/clinical-guidelines.cfm#2

  11. Kuster SP, Hasse B, Huebner V, Bansal V, Zbinden R, Ruef C, Ledergerber B, Weber R (2010) Risks factors for infections with extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae at a tertiary care university hospital in Switzerland. Infection 38:33–40

    Article  PubMed  CAS  Google Scholar 

  12. Tschudin-Sutter S, Frei R, Dangel M, Stranden A, Widmer AF (2012) Rate of transmission of extended-spectrum beta-lactamase-producing enterobacteriaceae without contact isolation. Clin Infect Dis 55:1505–1511

    Google Scholar 

  13. Rodriguez-Bano J, Navarro MD, Romero L, Martinez–Martinez L, Muniain MA, Perea EJ, Perez-Cano R, Pascual A (2004) Epidemiology and clinical features of infections caused by extended-spectrum beta-lactamase-producing Escherichia coli in nonhospitalized patients. J Clin Microbiol 42:1089–1094

    Article  PubMed  Google Scholar 

  14. Overdevest I, Willemsen I, Rijnsburger M, Eustace A, Xu L, Hawkey P, Heck M, Savelkoul P, Vandenbroucke-Grauls C, van der Zwaluw K, Huijsdens X, Kluytmans J (2011) Extended-spectrum beta-lactamase genes of Escherichia coli in chicken meat and humans, The Netherlands. Emerg Infect Dis 17:1216–1222

    Article  PubMed  Google Scholar 

  15. Ena J, Arjona F, Martinez-Peinado C, Lopez-Perezagua MM, Amador C (2006) Epidemiology of urinary tract infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. Urology 68:1169–1174

    Article  PubMed  Google Scholar 

  16. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, Moran GJ, Nicolle LE, Raz R, Schaeffer AJ, Soper DE (2011) International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 52:e103–e120

    Article  PubMed  Google Scholar 

  17. Wagenlehner FM, van OE, Tenke P, Tandogdu Z, Cek M, Grabe M, Wullt B, Pickard R, Naber KG, Pilatz A, Weidner W, Bjerklund-Johansen TE (2012) Infective complications after prostate biopsy: outcome of the Global Prevalence Study of Infections in Urology (GPIU) 2010 and 2011, a prospective multinational multicentre prostate biopsy study. Eur Urol [Epub ahead of print]

  18. Blaettler L, Mertz D, Frei R, Elzi L, Widmer AF, Battegay M, Fluckiger U (2009) Secular trend and risk factors for antimicrobial resistance in Escherichia coli isolates in Switzerland 1997–2007. Infection 37:534–539

    Article  PubMed  CAS  Google Scholar 

  19. Schito GC (2003) Why fosfomycin trometamol as first line therapy for uncomplicated UTI? Int J Antimicrob Agents 22(Suppl 2):79–83

    Article  PubMed  Google Scholar 

  20. Estebanez A, Pascual R, Gil V, Ortiz F, Santibanez M, Perez BC (2009) Fosfomycin in a single dose versus a 7-day course of amoxicillin-clavulanate for the treatment of asymptomatic bacteriuria during pregnancy. Eur J Clin Microbiol Infect Dis 28:1457–1464

    Article  PubMed  CAS  Google Scholar 

  21. Garau J (2008) Other antimicrobials of interest in the era of extended-spectrum beta-lactamases: fosfomycin, nitrofurantoin and tigecycline. Clin Microbiol Infect 14(Suppl 1):198–202

    Article  PubMed  CAS  Google Scholar 

  22. de Cueto M, Hernandez JR, Lopez-Cerero L, Morillo C, Pascual A (2006) Activity of fosfomycin against extended-spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae. Enferm Infecc Microbiol Clin 24:613–616

    Article  PubMed  Google Scholar 

  23. Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE (2010) Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis 10:43–50

    Article  PubMed  CAS  Google Scholar 

  24. Oteo J, Orden B, Bautista V, Cuevas O, Arroyo M, Martinez-Ruiz R, Perez-Vazquez M, Alcaraz M, Garcia-Cobos S, Campos J (2009) CTX-M-15-producing urinary Escherichia coli O25b-ST131-phylogroup B2 has acquired resistance to fosfomycin. J Antimicrob Chemother 64:712–717

    Article  PubMed  CAS  Google Scholar 

  25. Oteo J, Bautista V, Lara N, Cuevas O, Arroyo M, Fernandez S, Lazaro E, de Abajo FJ, Campos J (2010) Parallel increase in community use of fosfomycin and resistance to fosfomycin in extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. J Antimicrob Chemother 65:2459–2463

    Article  PubMed  CAS  Google Scholar 

  26. Alhambra A, Cuadros JA, Cacho J, Gomez-Garces JL, Alos JI (2004) In vitro susceptibility of recent antibiotic-resistant urinary pathogens to ertapenem and 12 other antibiotics. J Antimicrob Chemother 53:1090–1094

    Article  PubMed  CAS  Google Scholar 

  27. Mody RM, Erwin DP, Summers AM, Carrero HA, Selby EB, Ewell AJ, Moran KA (2007) Ertapenem susceptibility of extended spectrum beta-lactamase-producing organisms. Ann Clin Microbiol Antimicrob 6:6

    Article  PubMed  Google Scholar 

  28. Tamayo J, Orden B, Cacho J, Cuadros J, Gomez-Garces JL, Alos JI (2007) Activity of ertapenem and other antimicrobials against ESBL-producing enterobacteria isolated from urine in patients from Madrid. Rev Esp Quimioter 20:334–338

    PubMed  CAS  Google Scholar 

  29. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602

    Article  PubMed  CAS  Google Scholar 

  30. Thomson KS, Moland ES (2001) Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 45:3548–3554

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None of the contributing authors has any conflict of interest relevant to the subject matter or materials discussed in the manuscript. No funding or other financial support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bonkat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonkat, G., Müller, G., Braissant, O. et al. Increasing prevalence of ciprofloxacin resistance in extended-spectrum-β-lactamase-producing Escherichia coli urinary isolates. World J Urol 31, 1427–1432 (2013). https://doi.org/10.1007/s00345-013-1031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-013-1031-5

Keywords

Navigation