Skip to main content
Log in

MR neurography of ulnar nerve entrapment at the cubital tunnel: a diffusion tensor imaging study

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

MR neurography, diffusion tensor imaging (DTI) and tractography at 3 Tesla were evaluated for the assessment of patients with ulnar neuropathy at the elbow (UNE).

Methods

Axial T2-weighted and single-shot DTI sequences (16 gradient encoding directions) were acquired, covering the cubital tunnel of 46 patients with clinically and electrodiagnostically confirmed UNE and 20 healthy controls. Cross-sectional area (CSA) was measured at the retrocondylar sulcus and FA and ADC values on each section along the ulnar nerve. Three-dimensional nerve tractography and T2-weighted neurography results were independently assessed by two raters.

Results

Patients showed a significant reduction of ulnar nerve FA values at the retrocondylar sulcus (p = 0.002) and the deep flexor fascia (p = 0.005). At tractography, a complete or partial discontinuity of the ulnar nerve was found in 26/40 (65 %) of patients. Assessment of T2 neurography was most sensitive in detecting UNE (sensitivity, 91 %; specificity, 79 %), followed by tractography (88 %/69 %). CSA and FA measurements were less effective in detecting UNE.

Conclusion

T2-weighted neurography remains the most sensitive MR technique in the imaging evaluation of clinically manifest UNE. DTI-based neurography at 3 Tesla supports the MR imaging assessment of UNE patients by adding quantitative and 3D imaging data.

Key Points

DTI and tractography support conventional MR neurography in the detection of UNE

Regionally reduced FA values and discontinuous tractography patterns indicate UNE

T2-weighted MR neurography remains the imaging gold standard in cases of UNE

DTI-based ulnar nerve tractography offers additional topographic information in 3D

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADC:

apparent diffusion coefficient

CSA:

cross-sectional area

DTI:

diffusion tensor imaging

FA:

fractional anisotropy

ICC:

intraclass correlation coefficient

ROC:

receiver operating characteristic

ROI:

region of interest

UNE:

ulnar neuropathy at the elbow

References

  1. Mallette P, Zhao M, Zurakowski D, Ring D (2007) Muscle atrophy at diagnosis of carpal and cubital tunnel syndrome. J Hand Surg [Am] 32:855–858

    Article  Google Scholar 

  2. Landau ME, Campbell WW (2013) Clinical features and electrodiagnosis of ulnar neuropathies. Phys Med Rehabil Clin N Am 24:49–66

    Article  PubMed  Google Scholar 

  3. Shen J, Zhou CP, Zhong XM et al (2010) MR neurography: T1 and T2 measurements in acute peripheral nerve traction injury in rabbits. Radiology 254:729–738

    Article  PubMed  Google Scholar 

  4. Bayrak AO, Bayrak IK, Turker H, Elmali M, Nural MS (2010) Ultrasonography in patients with ulnar neuropathy at the elbow: comparison of cross-sectional area and swelling ratio with electrophysiological severity. Muscle Nerve 41:661–666

    PubMed  Google Scholar 

  5. Beekman R, Visser LH, Verhagen WI (2011) Ultrasonography in ulnar neuropathy at the elbow: a critical review. Muscle Nerve 43:627–635

    Article  PubMed  Google Scholar 

  6. Keen NN, Chin CT, Engstrom JW, Saloner D, Steinbach LS (2012) Diagnosing ulnar neuropathy at the elbow using magnetic resonance neurography. Skeletal Radiol 41:401–407

    Article  PubMed  Google Scholar 

  7. Bendszus M, Wessig C, Solymosi L, Reiners K, Koltzenburg M (2004) MRI of peripheral nerve degeneration and regeneration: correlation with electrophysiology and histology. Exp Neurol 188:171–177

    Article  PubMed  Google Scholar 

  8. Husarik DB, Saupe N, Pfirrmann CW, Jost B, Hodler J, Zanetti M (2009) Elbow nerves: MR findings in 60 asymptomatic subjects–normal anatomy, variants, and pitfalls. Radiology 252:148–156

    Article  PubMed  Google Scholar 

  9. Baumer P, Dombert T, Staub F et al (2011) Ulnar neuropathy at the elbow: MR neurography–nerve T2 signal increase and caliber. Radiology 260:199–206

    Article  PubMed  Google Scholar 

  10. Hiltunen J, Suortti T, Arvela S, Seppa M, Joensuu R, Hari R (2005) Diffusion tensor imaging and tractography of distal peripheral nerves at 3 T. Clin Neurophysiol 116:2315–2323

    Article  PubMed  Google Scholar 

  11. Stein D, Neufeld A, Pasternak O et al (2009) Diffusion tensor imaging of the median nerve in healthy and carpal tunnel syndrome subjects. J Magn Reson Imaging 29:657–662

    Article  PubMed  Google Scholar 

  12. Andreisek G, White LM, Kassner A, Tomlinson G, Sussman MS (2009) Diffusion tensor imaging and fiber tractography of the median nerve at 1.5T: optimization of b value. Skeletal Radiol 38:51–59

    Article  PubMed  Google Scholar 

  13. Guggenberger R, Markovic D, Eppenberger P et al (2012) Assessment of median nerve with MR neurography by using diffusion-tensor imaging: normative and pathologic diffusion values. Radiology 265:194–203

    Article  PubMed  Google Scholar 

  14. Bäumer P, Pham M, Ruetters M et al (2014) Peripheral neuropathy: detection with diffusion-tensor imaging. Radiology 273:185–193

    Article  PubMed  Google Scholar 

  15. Hiltunen J, Kirveskari E, Numminen J, Lindfors N, Goransson H, Hari R (2012) Pre- and post-operative diffusion tensor imaging of the median nerve in carpal tunnel syndrome. Eur Radiol 22:1310–1319

    Article  PubMed  Google Scholar 

  16. Khalil C, Hancart C, Le Thuc V, Chantelot C, Chechin D, Cotten A (2008) Diffusion tensor imaging and tractography of the median nerve in carpal tunnel syndrome: preliminary results. Eur Radiol 18:2283–2291

    Article  CAS  PubMed  Google Scholar 

  17. Brienza M, Pujia F, Colaiacomo MC et al (2014) 3T diffusion tensor imaging and electroneurography of peripheral nerve: a morphofunctional analysis in carpal tunnel syndrome. J Neuroradiol 41:124–130

    Article  PubMed  Google Scholar 

  18. Lindberg PG, Feydy A, Le Viet D, Maier MA, Drape JL (2013) Diffusion tensor imaging of the median nerve in recurrent carpal tunnel syndrome - initial experience. Eur Radiol 23:3115–3123

    Article  PubMed  Google Scholar 

  19. Barcelo C, Faruch M, Lapegue F, Bayol MA, Sans N (2013) 3-T MRI with diffusion tensor imaging and tractography of the median nerve. Eur Radiol 23:3124–3130

    Article  PubMed  Google Scholar 

  20. Takagi T, Nakamura M, Yamada M et al (2009) Visualization of peripheral nerve degeneration and regeneration: monitoring with diffusion tensor tractography. Neuroimage 44:884–892

    Article  PubMed  Google Scholar 

  21. Stöhr M, Riffel B (1988) Nerven- und Nervenwurzelläsionen. Praktische Neurologie. VCH, Weinheim

    Google Scholar 

  22. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    Article  CAS  PubMed  Google Scholar 

  23. Assmus H, Antoniadis G, Bischoff C et al (2011) Cubital tunnel syndrome - a review and management guidelines. Cen Eur Neurosurg 72:90–98

    Article  CAS  Google Scholar 

  24. Beekman R, Schoemaker MC, Van Der Plas JP et al (2004) Diagnostic value of high-resolution sonography in ulnar neuropathy at the elbow. Neurology 62:767–773

    Article  CAS  PubMed  Google Scholar 

  25. Lehmann HC, Zhang J, Mori S, Sheikh KA (2010) Diffusion tensor imaging to assess axonal regeneration in peripheral nerves. Exp Neurol 223:238–244

    Article  PubMed Central  PubMed  Google Scholar 

  26. Beekman R, Van Der Plas JP, Uitdehaag BM, Schellens RL, Visser LH (2004) Clinical, electrodiagnostic, and sonographic studies in ulnar neuropathy at the elbow. Muscle Nerve 30:202–208

    Article  PubMed  Google Scholar 

  27. Kabakci N, Gurses B, Firat Z et al (2007) Diffusion tensor imaging and tractography of median nerve: normative diffusion values. AJR Am J Roentgenol 189:923–927

    Article  PubMed  Google Scholar 

  28. Guggenberger R, Nanz D, Bussmann L et al (2013) Diffusion tensor imaging of the median nerve at 3.0 T using different MR scanners: agreement of FA and ADC measurements. Eur J Radiol 82:e590–e596

    Article  PubMed  Google Scholar 

  29. Hui ES, Cheung MM, Chan KC, Wu EX (2010) B-value dependence of DTI quantitation and sensitivity in detecting neural tissue changes. Neuroimage 49:2366–2374

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The scientific guarantor of this publication is Gregor Kasprian. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. Michael Weber kindly provided statistical advice for this manuscript. Institutional review board approval was obtained. Written informed consent was obtained from all subjects in this study. Methodology: prospective diagnostic study performed at one institution

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia B. Breitenseher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 32 kb)

ESM 2

(JPEG 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breitenseher, J.B., Kranz, G., Hold, A. et al. MR neurography of ulnar nerve entrapment at the cubital tunnel: a diffusion tensor imaging study. Eur Radiol 25, 1911–1918 (2015). https://doi.org/10.1007/s00330-015-3613-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3613-7

Keywords

Navigation