Skip to main content
Log in

Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines

  • Contrast Media
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Purpose

The Contrast Media Safety Committee (CMSC) of the European Society of Urogenital Radiology (ESUR) has updated its 1999 guidelines on contrast medium-induced nephropathy (CIN).

Areas covered

Topics reviewed include the definition of CIN, the choice of contrast medium, the prophylactic measures used to reduce the incidence of CIN, and the management of patients receiving metformin.

Key Points

• Definition, risk factors and prevention of contrast medium induced nephropathy are reviewed.

• CIN risk is lower with intravenous than intra-arterial iodinated contrast medium.

• eGFR of 45 ml/min/1.73 m 2 is CIN risk threshold for intravenous contrast medium.

• Hydration with either saline or sodium bicarbonate reduces CIN incidence.

• Patients with eGFR ≥60 ml/min/1.73 m 2 receiving contrast medium can continue metformin normally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. For MDRD formula go to internet address

    http://www.nkdep.nih.gov/professionals/gfr_calculators/orig_con.htm or

    http://nephron.com/cgi-bin/CGSIdefault.cgi or

    http://www.nephron.com/MDRD_GFR.cgi

References

  1. Morcos SK, Thomsen HS, Webb JAW et al (1999) Contrast-media-induced nephrotoxicity: a consensus report. Eur Radiol 9:1602–1613

    PubMed  CAS  Google Scholar 

  2. Thomsen HS, Morcos SK, ESUR Contrast Media Safety Committee (1999) Contrast media and metformin: guidelines to diminish the risk of lactic acidosis in non-insulin-dependent diabetics after administration of contrast media. Eur Radiol 9:738–740

    PubMed  CAS  Google Scholar 

  3. Renal adverse reactions to iodinated contrast media (2008) Contrast media safety guidelines of the Contrast Media Safety Committee of the European Society of Urogenital Radiology, version 7.0. Available at: http://www.esur.org/Contrast-media.51.0.html#c269 Accessed 6 June 2011

  4. McCullough PA, Stacul F, Davidson C et al (2006) Overview. Am J Cardiol 98:2K–4K

    Google Scholar 

  5. Molitoris BA, Levin A, Warnock DG et al (2007) Improving outcomes from acute kidney injury. J Am Soc Nephrol 18:1992–1994

    PubMed  CAS  Google Scholar 

  6. Molitoris BA, Levin A, Warnock DG et al (2007) Improving outcomes of acute kidney injury: report of an initiative. Nat Clin Pract Nephrol 3:439–442

    PubMed  Google Scholar 

  7. Mehta RL, Kellum JA, Shah SV et al (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31

    PubMed  Google Scholar 

  8. Weisbord SD, Chen H, Stone RA et al (2006) Associations of increases in serum creatinine with mortality and length of hospital stay after coronary angiography. J Am Soc Nephrol 17:2871–2877

    PubMed  CAS  Google Scholar 

  9. Solomon RJ, Mehran R, Natarajan MK et al (2009) Contrast-induced nephropathy and long-term adverse events: cause and effect? Clin J Am Soc Nephrol 4:1162–1169

    PubMed  Google Scholar 

  10. Waikar SS, Bonventre JV (2009) Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol 20:672–679

    PubMed  CAS  Google Scholar 

  11. Thomsen HS, Morcos SK (2009) Risk of contrast-medium-induced nephropathy in high-risk patients undergoing MDCT—a pooled analysis of two randomized trials. Eur Radiol 19:891–897

    PubMed  Google Scholar 

  12. Reddan D, Laville M, Garovic VD (2009) Contrast-induced nephropathy and its prevention: what do we really know from evidence-based findings? J Nephrol 22:333–351

    PubMed  CAS  Google Scholar 

  13. Toprak O (2007) What is the best definition of contrast-induced nephropathy? Ren Fail 29:387–388

    PubMed  Google Scholar 

  14. Davidson CJ, Hlatky M, Morrris KG et al (1989) Cardiovascular and renal toxicity of a nonionic radiographic contrast agent after cardiac catheterization. A prospective trial. Ann Intern Med 110:119–124

    PubMed  CAS  Google Scholar 

  15. McCullough PA, Sandberg KR (2003) Epidemiology of contrast-induced nephropathy. Rev Cardiovasc Med 4:53–59

    Google Scholar 

  16. Newhouse JH, Kho D, Rao QA, Starren J (2008) Frequency of serum creatinine changes in the absence of iodinated contrast material: implications for studies of contrast nephrotoxicity. AJR Am J Roentgenol 191:376–382

    PubMed  Google Scholar 

  17. Bruce RJ, Djamali A, Shinki K et al (2009) Background fluctuation of kidney function versus contrast-induced nephrotoxicity. AJR Am J Roentgenol 192:711–718

    PubMed  Google Scholar 

  18. Toprak O (2007) Risk markers for contrast-induced nephropathy. Am J Med Sci 334:283–290

    PubMed  Google Scholar 

  19. Thomsen HS, Morcos SK, Members of Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR) (2005) In which patients should serum creatinine be measured before iodinated contrast medium administration? Eur Radiol 15:749–754

    PubMed  Google Scholar 

  20. Bartholomew BA, Harjai KJ, Dukkipati S et al (2004) Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification. Am J Cardiol 93:1515–1519

    PubMed  Google Scholar 

  21. Brown JR, DeVries JT, Piper WD et al (2008) Serious renal dysfunction after percutaneous coronary interventions can be predicted. Am Heart J 155:260–266

    PubMed  Google Scholar 

  22. McCullough PA, Wolyn R, Rocher LL et al (1997) Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med 103:368–375

    PubMed  CAS  Google Scholar 

  23. Mehran R, Aymong ED, Nikolsky E et al (2004) A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol 44:1393–1399

    PubMed  Google Scholar 

  24. Rihal CS, Textor SC, Grill DE et al (2002) Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation 105:2259–2264

    PubMed  Google Scholar 

  25. Dangas G, Iakovou I, Nikolsky E et al (2005) Contrast-induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables. Am J Cardiol 95:13–19

    PubMed  Google Scholar 

  26. Schwartz GJ, Haycock GB, Edelmann CM, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263

    PubMed  CAS  Google Scholar 

  27. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    PubMed  Google Scholar 

  28. Glassock RJ, Winearls C (2008) The global burden of chronic kidney disease: how valid are the estimates? Nephron Clin Pract 110:c39–c47

    PubMed  Google Scholar 

  29. Delanaye P, Cohen EP (2008) Formula-based estimates of the GFR: equations variable and uncertain. Nephron Clin Pract 110:c48–c54

    PubMed  CAS  Google Scholar 

  30. Parfrey PS, Griffiths SM, Barrett BJ et al (1989) Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. New Engl J Med 320:143–149

    PubMed  CAS  Google Scholar 

  31. Gruberg L, Mintz GS, Mehran R et al (2000) The prognostic implications of further renal function deterioration within 48 h of interventional coronary procedures in patients with pre-existent chronic renal insufficiency. J Am Coll Cardiol 36:1542–1548

    PubMed  CAS  Google Scholar 

  32. Marenzi G, Lauri G, Assanelli E et al (2004) Contrast-induced nephropathy in patients undergoing primary angioplasty for acute myocardial infarction. J Am Coll Cardiol 44:1780–1785

    PubMed  Google Scholar 

  33. Alamartine E, Phayphet M, Thibaudin D et al (2003) Contrast medium-induced acute renal failure and cholesterol embolism after radiological procedures: incidence, risk factors, and compliance with recommendations. Eur J Intern Med 14:426–431

    PubMed  Google Scholar 

  34. Morcos SK (2005) Prevention of contrast media induced nephrotoxicity after angiographic procedures. J Vasc Interv Radiol 16:13–23

    PubMed  Google Scholar 

  35. McCullough PA, Soman SS (2005) Contrast-induced nephropathy. Crit Care Clin 21:261–280

    PubMed  Google Scholar 

  36. Nikolsky E, Mehran R, Lasic Z et al (2005) Low hematocrit predicts contrast-induced nephropathy after percutaneous coronary interventions. Kidney Int 67:706–713

    PubMed  Google Scholar 

  37. McCarthy CS, Becker JA (1992) Multiple myeloma and contrast media. Radiology 183:519–521

    PubMed  CAS  Google Scholar 

  38. Preda L, Agazzi A, Raimondi S et al (2011) Effect on renal function of an iso-osmolar contrast agent in patients with monoclonal gammopathies. Eur Radiol 21:63–69

    PubMed  Google Scholar 

  39. Katzberg RW, Lamba R (2009) Contrast-induced nephropathy after intravenous administration: fact or fiction? Radiol Clin North Am 47:789–800

    PubMed  Google Scholar 

  40. Weisbord SD, Mor MK, Resnick AL et al (2008) Incidence and outcomes of contrast-induced AKI following computed tomography. Clin J Am Soc Nephrol 3:1274–1281

    PubMed  Google Scholar 

  41. Kim SM, Cha R, Lee JP et al (2010) Incidence and outcomes of contrast-induced nephropathy after computed tomography in patients with CKD: a quality improvement report. Am J Kidney Dis 55:1018–1025

    PubMed  Google Scholar 

  42. Bauer C, Melamed ML, Hostetter TH (2008) Staging of chronic kidney disease: time for a course correction. J Am Soc Nephrol 19:844–846

    PubMed  Google Scholar 

  43. Glassock RJ (2009) Estimated glomerular filtration rate: time for a performance review? Kidney Int 75:1001–1003

    PubMed  Google Scholar 

  44. Abutaleb N (2007) Why we should sub-divide CKD stage 3 into early (3a) and late (3b) components. Nephrol Dial Transplant 22:2728–2729

    PubMed  Google Scholar 

  45. Barrett BJ, Carlisle EJ (1993) Meta-analysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology 188:171–178

    PubMed  CAS  Google Scholar 

  46. Aspelin P, Aubry P, Fransson SG et al (2003) Nephrotoxic effects in high-risk patients undergoing angiography. New Engl J Med 348:491–499

    PubMed  CAS  Google Scholar 

  47. Jo SH, Youn TJ, Koo BK et al (2006) Renal toxicity evaluation and comparison between visipaque (iodixanol) and hexabrix (ioxaglate) in patients with renal insufficiency undergoing coronary angiography: the RECOVER study: a randomized controlled trial. J Am Coll Cardiol 48:924–930

    PubMed  CAS  Google Scholar 

  48. Nie B, Cheng WJ, Li YF et al (2008) A prospective, double-blind, randomized, controlled trial on the efficacy and cardiorenal safety of iodixanol vs. iopromide in patients with chronic kidney disease undergoing coronary angiography with or without percutaneous coronary intervention. Catheter Cardiovasc Interv 72:958–965

    PubMed  Google Scholar 

  49. Rudnick MR, Davidson C, Laskey W et al (2008) Nephrotoxicity of iodixanol versus ioversol in patients with chronic kidney disease: the Visipaque Angiography/Interventions with Laboratory Outcomes in Renal Insufficiency (VALOR) Trial. Am Heart J 156:776–782

    PubMed  CAS  Google Scholar 

  50. Solomon RJ, Natarajan MK, Doucet S et al (2007) Cardiac Angiography in Renally Impaired Patients (CARE) study: a randomized double-blind trial of contrast-induced nephropathy in patients with chronic kidney disease. Circulation 115:3189–3196

    PubMed  Google Scholar 

  51. Wessely R, Koppara T, Bradaric C et al (2009) Choice of contrast medium in patients with impaired renal function undergoing percutaneous coronary intervention. Circ Cardiovasc Interv 2:430–437

    PubMed  Google Scholar 

  52. Laskey W, Aspelin P, Davidson C et al (2009) Nephrotoxicity of iodixanol versus iopamidol in patients with chronic kidney disease and diabetes mellitus undergoing coronary angiographic procedures. Am Heart J 158:822–828

    PubMed  CAS  Google Scholar 

  53. Briguori C, Colombo A, Airoldi F et al (2005) Nephrotoxicity of low-osmolality versus iso-osmolality contrast agents: impact of N-acetylcysteine. Kidney Int 68:2250–2255

    PubMed  CAS  Google Scholar 

  54. Chalmers N, Jackson RW (1999) Comparison of iodixanol and iohexol in renal impairment. Br J Radiol 72:701–703

    PubMed  CAS  Google Scholar 

  55. Hardiek KJ, Katholi RE, Robbs RS, Katholi CE (2008) Renal effects of contrast media in diabetic patients undergoing diagnostic or interventional coronary angiography. J Diabetes Complications 22:171–177

    PubMed  Google Scholar 

  56. Juergens CP, Winter JP, Nguyen-Do P et al (2009) Nephrotoxic effects of iodixanol and iopromide in patients with abnormal renal function receiving N-acetylcysteine and hydration before coronary angiography and intervention: a randomized trial. Intern Med J 39:25–31

    PubMed  CAS  Google Scholar 

  57. Mehran R, Nikolsky E, Kirtane AJ et al (2009) Ionic low-osmolar versus nonionic iso-osmolar contrast media to obviate worsening nephropathy after angioplasty in chronic renal failure patients: the ICON (Ionic versus non-ionic Contrast to Obviate worsening Nephropathy after angioplasty in chronic renal failure patients) study. JACC Cardiovasc Interv 2:415–421

    PubMed  Google Scholar 

  58. Nguyen SA, Suranyi P, Ravenel JG et al (2008) Iso-osmolality versus low-osmolality iodinated contrast medium at intravenous contrast-enhanced CT: effect on kidney function. Radiology 248:97–105

    PubMed  Google Scholar 

  59. Thomsen HS, Morcos SK, Erley CM et al (2008) The ACTIVE Trial: comparison of the effects on renal function of iomeprol-400 and iodixanol-320 in patients with chronic kidney disease undergoing abdominal computed tomography. Invest Radiol 43:170–178

    PubMed  CAS  Google Scholar 

  60. Barrett BJ, Katzberg RW, Thomsen HS et al (2006) Contrast-induced nephropathy in patients with chronic kidney disease undergoing computed-tomography: a double-blind comparison of iodixanol and iopamidol. Invest Radiol 41:815–821

    PubMed  CAS  Google Scholar 

  61. Carraro M, Malalan F, Antonione R et al (1998) Effects of a dimeric vs a monomeric nonionic contrast medium on renal function in patients with mild to moderate renal insufficiency: a double-blind randomized clinical trial. Eur Radiol 8:144–147

    PubMed  CAS  Google Scholar 

  62. Kuhn MJ, Chen N, Sahani DV et al (2008) The PREDICT study: a randomized double-blind comparison of contrast-induced nephropathy after low or isoosmolar contrast agent exposure. AJR Am J Roentgenol 191:151–157

    PubMed  Google Scholar 

  63. Heinrich MC, Häberle L, Müller V et al (2009) Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials. Radiology 250:68–86

    PubMed  Google Scholar 

  64. Reed M, Meier P, Tamhane UU et al (2009) The relative renal safety of iodixanol compared with low-osmolar contrast media: a meta-analysis of randomized controlled trials. JACC Cardiovasc Interv 2:645–654

    PubMed  Google Scholar 

  65. McCullough PA, Bertrand ME, Brinker JA, Stacul F (2006) A meta-analysis of the renal safety of isosmolar iodixanol compared with low-osmolar contrast media. J Am Coll Cardiol 48:692–699

    PubMed  CAS  Google Scholar 

  66. Laskey WK, Jenkins C, Selzer F et al (2007) Volume-to-creatinine clearance ratio: a pharmacokinetically based risk factor for prediction of early creatinine increase after percutaneous coronary intervention. J Am Coll Cardiol 50:584–590

    PubMed  CAS  Google Scholar 

  67. Nyman U, Biörk J, Aspelin P, Marenzi G (2008) Contrast medium dose-to-GFR ratio: a measure of systemic exposure to predict contrast-induced nephropathy after percutaneous coronary intervention. Acta Radiol 49:658–667

    PubMed  CAS  Google Scholar 

  68. Manske CL, Sprafka JM, Strony JT, Wang Y (1990) Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography. Am J Med 89:615–620

    PubMed  CAS  Google Scholar 

  69. Ellis JH, Cohan RH (2009) Prevention of contrast induced nephropathy: an overview. Radiol Clin N Am 47:801–811

    PubMed  Google Scholar 

  70. Stacul F, Adam A, Becker CR et al (2006) Strategies to reduce the risk of contrast-induced nephropathy. Am J Cardiol 98:59K–77K

    PubMed  CAS  Google Scholar 

  71. Trivedi HS, Moore H, Nasr S et al (2003) A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity. Nephron Clin Pract 93:C29–C34

    PubMed  CAS  Google Scholar 

  72. Dussol B, Morange S, Loundoun A et al (2006) A randomized trial of saline hydration to prevent contrast nephropathy in chronic renal failure patients. Nephrol Dial Transplant 21:2120–2126

    PubMed  CAS  Google Scholar 

  73. Taylor AJ, Hotchkiss D, Morse RW, McCabe J (1998) PREPARED: Preparation for Angiography in Renal Dysfunction: a randomized trial of inpatient vs outpatient hydration protocols for cardiac catheterization in mild-to-moderate renal dysfunction. Chest 114:1570–1574

    PubMed  CAS  Google Scholar 

  74. Mueller C, Buerkle G, Buettner HJ et al (2002) Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med 162:329–336

    PubMed  CAS  Google Scholar 

  75. Bader BD, Berger ED, Heede MB et al (2004) What is the best hydration regimen to prevent contrast media-induced nephrotoxicity? Clin Nephrol 62:1–7

    PubMed  CAS  Google Scholar 

  76. Krasuski RA, Beard BM, Geoghagan JD et al (2003) Optimal timing of hydration to erase contrast-associated nephropathy: the OTHER CAN study. J Invasive Cardiol 15:699–702

    PubMed  Google Scholar 

  77. Joannidis M, Schmid M, Wiedermann CJ (2008) Prevention of contrast media-induced nephropathy by isotonic sodium bicarbonate: a meta-analysis. Wien Klin Wochenschr 120:742–748

    PubMed  CAS  Google Scholar 

  78. Merten GJ, Burgess WP, Gray LV et al (2004) Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA 291:2328–2334

    PubMed  CAS  Google Scholar 

  79. Brar SS, Hiremath S, Dangas G et al (2009) Sodium bicarbonate for the prevention of contrast induced-acute kidney injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol 4:1584–1592

    PubMed  CAS  Google Scholar 

  80. Hogan SE, L’allier P, Chetcuti S et al (2008) Current role of sodium bicarbonate-based preprocedural hydration for the prevention of contrast-induced acute kidney injury: a meta-analysis. Am Heart J 156:414–421

    PubMed  CAS  Google Scholar 

  81. Meier P, Ko DT, Tamura A et al (2009) Sodium bicarbonate-based hydration prevents contrast-induced nephropathy: a meta-analysis. BMC Med 7:23

    PubMed  Google Scholar 

  82. Navaneethan SD, Singh S, Appasamy S et al (2009) Sodium bicarbonate therapy for prevention of contrast-induced nephropathy: a systematic review and meta-analysis. Am J Kidney Dis 53:617–627

    PubMed  CAS  Google Scholar 

  83. Weisbord SD, Palevsky PM (2008) Prevention of contrast-induced nephropathy with volume expansion. Clin J Am Soc Nephrol 3:273–280

    PubMed  CAS  Google Scholar 

  84. Biondi-Zoccai GG, Lotrionte M, Abbate A et al (2006) Compliance with QUOROM and quality of reporting of overlapping meta-analyses on the role of acetylcysteine in the prevention of contrast associated nephropathy: case study. BMJ 332:202–209

    PubMed  Google Scholar 

  85. Trivedi H, Nadella R, Szabo A (2010) Hydration with sodium bicarbonate for the prevention of contrast-induced nephropathy: a meta-analysis of randomized controlled trials. Clin Nephrol 74:288–296

    PubMed  CAS  Google Scholar 

  86. Tamura A, Goto Y, Miyamoto K et al (2009) Efficacy of single-bolus administration of sodium bicarbonate to prevent contrast-induced nephropathy in patients with mild renal insufficiency undergoing an elective coronary procedure. Am J Cardiol 104:921–925

    PubMed  CAS  Google Scholar 

  87. Briguori C, Colombo A, Airoldi F et al (2004) N-Acetylcysteine versus fenoldopam mesylate to prevent contrast agent-associated nephrotoxicity. J Am Coll Cardiol 44:762–765

    PubMed  CAS  Google Scholar 

  88. Majumdar SR, Kjellstrand CM, Tymchak WJ et al (2009) Forced euvolemic diuresis with mannitol and furosemide for prevention of contrast-induced nephropathy in patients with CKD undergoing coronary angiography: a randomized controlled trial. Am J Kidney Dis 54:602–609

    PubMed  CAS  Google Scholar 

  89. Ng TM, Shurmur SW, SIlver M et al (2006) Comparison of N-acetylcysteine and fenoldopam for preventing contrast-induced nephropathy (CAFCIN). Int J Cardiol 109:322–328

    PubMed  Google Scholar 

  90. Stone GW, McCullough PA, Tumlin JA et al (2003) Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial. JAMA 290:2284–2291

    PubMed  CAS  Google Scholar 

  91. Attallah N, Yassine L, Musial J et al (2004) The potential role of statins in contrast nephropathy. Clin Nephrol 62:273–278

    PubMed  CAS  Google Scholar 

  92. Boscheri A, Weinbrenner C, Botzek B et al (2007) Failure of ascorbic acid to prevent contrast-media induced nephropathy in patients with renal dysfunction. Clin Nephrol 68:279–286

    PubMed  CAS  Google Scholar 

  93. Briguori C, Airoldi F, D’Andrea D et al (2007) Renal Insufficiency Following Contrast Media Administration Trial (REMEDIAL): a randomized comparison of 3 preventive strategies. Circulation 115:1211–1217

    PubMed  CAS  Google Scholar 

  94. Ix JH, McCulloch CE, Chertow GM (2004) Theophylline for the prevention of radiocontrast nephropathy: a meta-analysis. Nephrol Dial Transplant 19:2747–2753

    PubMed  CAS  Google Scholar 

  95. Huber W, Eckel F, Hennig M et al (2006) Prophylaxis of contrast material-induced nephropathy in patients in intensive care: acetylcysteine, theophylline, or both? A randomized study. Radiology 239:793–804

    PubMed  Google Scholar 

  96. Jo SH, Koo BK, Park JS et al (2008) Prevention of radiocontrast medium-induced nephropathy using short-term high-dose simvastatin in patients with renal insufficiency undergoing coronary angiography (PROMISS) trial—a randomized controlled study. Am Heart J 155:499.e1–499.e8

    Google Scholar 

  97. Kelly AM, Dwamena B, Cronin P et al (2008) Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy. Ann Intern Med 148:284–294

    PubMed  Google Scholar 

  98. Khanal S, Attallah N, Smith DE et al (2005) Statin therapy reduces contrast-induced nephropathy: an analysis of contemporary percutaneous interventions. Am J Med 118:843–849

    PubMed  CAS  Google Scholar 

  99. Patti G, Nusca A, Chello M et al (2008) Usefulness of statin pretreatment to prevent contrast-induced nephropathy and to improve long-term outcome in patients undergoing percutaneous coronary intervention. Am J Cardiol 101:279–285

    PubMed  CAS  Google Scholar 

  100. Spargias K, Adreanides E, Demerouti E et al (2009) Iloprost prevents contrast-induced nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation 120:1793–1799

    PubMed  CAS  Google Scholar 

  101. Spargias K, Alexopoulos E, Kyrzopoulos S et al (2004) Ascorbic acid prevents contrast-mediated nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation 110:2837–2842

    PubMed  CAS  Google Scholar 

  102. Tepel M, van der Giet M, Schwarzfeld C et al (2000) Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. New Engl J Med 343:180–184

    PubMed  CAS  Google Scholar 

  103. Azmus AD, Gottschall C, Manica A et al (2005) Effectiveness of acetylcysteine in prevention of contrast nephropathy. J Invasive Cardiol 17:80–84

    PubMed  Google Scholar 

  104. Briguori C, Manganelli F, Scarpato P et al (2002) Acetylcysteine and contrast agent-associated nephrotoxicity. J Am Coll Cardiol 40:298–303

    PubMed  CAS  Google Scholar 

  105. Briguori C, Colombo A, Violante A et al (2004) Standard vs double dose of N-acetylcysteine to prevent contrast agent associated nephrotoxicity. Eur Heart J 25:206–211

    PubMed  CAS  Google Scholar 

  106. Kay J, Chow WH, Chan TM et al (2003) Acetylcysteine for prevention of acute deterioration of renal function following elective coronary angiography and intervention: a randomized controlled trial. JAMA 289:553–558

    PubMed  CAS  Google Scholar 

  107. Marenzi G, Assanelli E, Marana I et al (2006) N-acetylcysteine and contrast-induced nephropathy in primary angioplasty. New Engl J Med 354:2773–2782

    PubMed  CAS  Google Scholar 

  108. Webb JG, Pate GE, Humphries KH et al (2004) A randomized controlled trial of intravenous N-acetylcysteine for the prevention of contrast-induced nephropathy after cardiac catheterization: lack of effect. Am Heart J 148:422–429

    PubMed  CAS  Google Scholar 

  109. Trivedi H, Daram S, Szabo A et al (2009) High-dose N-acetylcysteine for the prevention of contrast-induced nephropathy. Am J Med 122:874.e9–874.e15

    Google Scholar 

  110. Fishbane S (2008) N-acetylcysteine in the prevention of contrast-induced nephropathy. Clin J Am Soc Nephrol 3:281–287

    PubMed  CAS  Google Scholar 

  111. Gonzales DA, Norsworthy KJ, Kern SJ et al (2007) A meta-analysis of N-acetylcysteine in contrast-induced nephrotoxicity: unsupervised clustering to resolve heterogeneity. BMC Med 5:32

    PubMed  Google Scholar 

  112. Pannu N, Wiebe N, Tonelli M (2006) Prophylaxis strategies for contrast-induced nephropathy. JAMA 295:2765–2779

    PubMed  CAS  Google Scholar 

  113. Sinert R, Doty CI (2007) Evidence-based emergency medicine review. Prevention of contrast-induced nephropathy in the emergency department. Ann Emerg Med 50:335–345

    PubMed  Google Scholar 

  114. Zagler A, Azadpour M, Mercado C, Hennekens CH (2006) N-acetylcysteine and contrast-induced nephropathy: a meta-analysis of 13 randomized trials. Am Heart J 151:140–145

    PubMed  CAS  Google Scholar 

  115. Bagshaw SM, McAlister FA, Manns BJ, Ghali WA (2006) Acetylcysteine in the prevention of contrast-induced nephropathy: a case study of the pitfalls in the evolution of evidence. Arch Intern Med 166:161–166

    PubMed  CAS  Google Scholar 

  116. Van Praet JT, De Vriese AS (2007) Prevention of contrast-induced nephropathy: a critical review. Curr Opin Nephrol Hypertens 16:336–347

    PubMed  Google Scholar 

  117. Vaitkus PT, Brar C (2007) N-acetylcysteine in the prevention of contrast-induced nephropathy: publication bias perpetuated by meta-analyses. Am Heart J 153:275–280

    PubMed  CAS  Google Scholar 

  118. Hoffmann U, Fischereder M, Krueger B et al (2004) The value of N-acetylcysteine in the prevention of radiocontrast agent-induced nephropathy seems questionable. J Am Soc Nephrol 15:407–410

    PubMed  CAS  Google Scholar 

  119. Poletti PA, Saudan P, Platon A et al (2007) I.v. N-acetylcysteine and emergency CT: use of serum creatinine and cystatin C as markers of radiocontrast nephrotoxicity. AJR Am J Roentgenol 189:687–692

    PubMed  Google Scholar 

  120. Haase M, Haase-Fielitz A, Ratnaike S et al (2008) N-Acetylcysteine does not artifactually lower plasma creatinine concentration. Nephrol Dial Transplant 23:1581–1587

    PubMed  CAS  Google Scholar 

  121. Morcos SK, Thomsen HS, Webb JA et al (2002) Dialysis and contrast media. Eur Radiol 12:3026–3030

    PubMed  Google Scholar 

  122. Marenzi G, Lauri G, Campodonico J et al (2006) Comparison of two hemofiltration protocols for prevention of contrast-induced nephropathy in high-risk patients. Am J Med 119:155–162

    PubMed  Google Scholar 

  123. Marenzi G, Marana I, Lauri G et al (2003) The prevention of radiocontrast-agent-induced nephropathy by hemofiltration. New Engl J Med 349:1333–1340

    PubMed  CAS  Google Scholar 

  124. Naughton CA (2008) Drug-induced nephrotoxicity. Am Fam Physician 78:743–750

    PubMed  Google Scholar 

  125. Pannu N, Nadim MK (2008) An overview of drug-induced acute kidney injury. Crit Care Med 36(4 Suppl):S216–S223

    PubMed  CAS  Google Scholar 

  126. Fishman EK, Reddan D (2008) What are radiologists doing to prevent contrast-induced nephropathy (CIN) compared with measures supported by current evidence? A survey of European radiologists on CIN associated with computed tomography. Acta Radiol 49:310–320

    PubMed  CAS  Google Scholar 

  127. Reddan D, Fishman EK (2008) Radiologists’ knowledge and perceptions of the impact of contrast-induced nephropathy and its risk factors when performing computed tomography examinations: a survey of European radiologists. Eur J Radiol 66:235–245

    PubMed  Google Scholar 

  128. Briguori C, Colombo A, Airoldi F et al (2006) Gadolinium-based contrast agents and nephrotoxicity in patients undergoing coronary artery procedures. Catheter Cardiovasc Interv 67:175–180

    PubMed  Google Scholar 

  129. Elmsthåhl B, Nyman U, Leander P et al (2004) Gadolinium contrast media are more nephrotoxic than a low osmolar iodine medium employing doses with equal X-ray attenuation in renal arteriography: an experimental study in pigs. Acad Radiol 11:1219–1228

    Google Scholar 

  130. Erley CM, Bader BD, Berger ED et al (2004) Gadolinium-based contrast media compared with iodinated media for digital subtraction angiography in azotaemic patients. Nephrol Dial Transplant 19:2526–2531

    PubMed  CAS  Google Scholar 

  131. Thomsen HS, Almèn T, Morcos SK et al (2002) Gadolinium-containing contrast media for radiographic examinations: a position paper. Eur Radiol 12:2600–2605

    PubMed  Google Scholar 

  132. Arsenault TM, King BF, Marsh JW Jr et al (1996) Systemic gadolinium toxicity in patients with renal insufficiency and renal failure: retrospective analysis of an initial experience. Mayo Clin Proc 71:1150–1154

    PubMed  CAS  Google Scholar 

  133. Zhang HL, Ersoy H, Prince MR (2006) Effects of gadopentetate dimeglumine and gadodiamide on serum calcium, magnesium, and creatinine measurements. J Magn Reson Imag 23:383–387

    Google Scholar 

  134. Hoffmann U, Fischereder M, Reil A et al (2005) Renal effects of gadopentetate dimeglumine in patients with normal and impaired renal function. Eur J Med Res 10:149–154

    PubMed  CAS  Google Scholar 

  135. Prince MR, Arnoldus C, Frisoli JK (1996) Nephrotoxicity of high-dose gadolinium compared with iodinated contrast. J Magn Reson Imag 6:162–166

    CAS  Google Scholar 

  136. Tombach B, Bremer C, Reimer P et al (2001) Renal tolerance of a neutral gadolinium chelate (gadobutrol) in patients with chronic renal failure: results of a randomized study. Radiology 218:651–657

    PubMed  CAS  Google Scholar 

  137. Sam AD II, Morasch MD, Collins J et al (2003) Safety of gadolinium contrast angiography in patients with chronic renal insufficiency. J Vasc Surg 38:313–318

    PubMed  Google Scholar 

  138. Ergun I, Keven K, Uruc I et al (2006) The safety of gadolinium in patients with stage 3 and 4 renal failure. Nephrol Dial Transplant 21:697–700

    PubMed  Google Scholar 

  139. Akgun H, Gonlusen G, Cartwright J et al (2006) Are gadolinium-based contrast media nephrotoxic? A renal biopsy study. Arch Pathol Lab Med 130:1354–1357

    PubMed  Google Scholar 

  140. Thomsen HS (2004) Gadolinium-based contrast media may be nephrotoxic even at approved doses. Eur Radiol 14:1654–1656

    PubMed  Google Scholar 

  141. Bolen S, Feldman L, Vassy J et al (2007) Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes. Ann Intern Med 147:386–399

    PubMed  Google Scholar 

  142. NICE Clinical Guideline. CG 87 Type 2 diabetes—newer agents (a partial update of CG 66): short guideline; Updated 18 June 2009 (2009) Available at http://www.nice.org.uk/nicemedia/live/12165/44320/44320.pdf Accessed 24 November 2010

  143. Bailey CJ, Turner RC (1996) Metformin. New Engl J Med 334:574–579

    PubMed  CAS  Google Scholar 

  144. Electronic Medicines Compendium: Glucophage SR. Updated 25 August 2009 (2009) Available at http://www.medicines.org.uk/EMC/medicine/20952/SPC Accessed 24 November 2010

  145. Stang M, Wysowski DK, Butler-Jones D (1999) Incidence of lactic acidosis in metformin users. Diabetes Care 22:925–927

    PubMed  CAS  Google Scholar 

  146. Salpeter S, Greyber E, Pasternak G, Salpeter EE (2010) Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev CD002967

  147. Cryer DR, Nicholas SP, Henry DH et al (2005) Comparative outcomes study of metformin intervention versus conventional approach the COSMIC approach study. Diabetes Care 28:539–543

    PubMed  CAS  Google Scholar 

  148. Sambol NC, Chiang J, Lin ET et al (1995) Kidney function and age are both predictors of pharmacokinetics of metformin. J Clin Pharmacol 35:1094–1102

    PubMed  CAS  Google Scholar 

  149. Sirtori CR, Pasik C (1994) Re-evaluation of a biguanide, metformin: mechanism of action and tolerability. Pharmacol Res 30:187–228

    PubMed  CAS  Google Scholar 

  150. Electronic Medicines Compendium: Glucophage. Updated 12 October 2010 (2010) Available at http://www.medicines.org.uk/EMC/medicine/1043/SPC Accessed 24 November 2010

  151. Holstein A, Stumvoll M (2005) Contraindications can damage your health—is metformin a case in point? Diabetologia 48:2454–2459

    PubMed  CAS  Google Scholar 

  152. Shaw JS, Wilmot RL, Kilpatrick ES (2007) Establishing pragmatic estimated GFR thresholds to guide metformin prescribing. Diabet Med 24:1160–1163

    PubMed  CAS  Google Scholar 

  153. Warren RE, Strachan MWJ, Wild S, McKnight JA (2007) Introducing glomerular filtration rate (eGFR) into clinical practice in the UK: implications for the use of metformin. Diabet Med 24:494–497

    PubMed  CAS  Google Scholar 

  154. McCullough PA, Stacul F, Becker CR et al (2006) Contrast-Induced Nephropathy (CIN) Consensus Working Panel: executive summary. Rev Cardiovasc Med 7:177–197

    PubMed  Google Scholar 

  155. Rudnick MR, Goldfarb S, Wexler L et al (1995) Nephrotoxicity of ionic and non-ionic contrast media in 1196 patients: a randomised trial. Kidney Int 47:254–261

    PubMed  CAS  Google Scholar 

  156. Goergen SK, Rumbold G, Compton G, Harris C (2010) Systematic review of current guidelines, and their evidence base, on risk of lactic acidosis after administration of contrast medium for patients receiving metformin. Radiology 254:261–269

    PubMed  Google Scholar 

  157. Thomsen HS, Morcos SK, Almen T et al (2010) Metformin and contrast media. (Letter) Radiology 256:672–673

    PubMed  Google Scholar 

  158. Gupta R (2002) Use of contrast agents in patients receiving metformin. (Letter) Radiology 225:311–312

    PubMed  Google Scholar 

  159. Bettman MA (2002) Use of intravenous contrast agents in patients receiving metformin. (Letter) Radiology 225:312

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Henrik S. Thomsen.

Additional information

Members of the Committee: H.S. Thomsen (Chairman, University of Copenhagen, Denmark), S.K. Morcos (Secretary, University of Sheffield, United Kingdom), T. Almén (University of Lund, Sweden), P. Aspelin (Karolinska Instituttet, Sweden), M.F. Bellin (University of Paris, France), O. Clement (University of Paris, France), G. Heinz-Peer (University of Vienna, Austria), P. Reimer (University of Freiburg, Germany), F. Stacul (University of Trieste, Italy), A.J. van der Molen (University of Leiden, the Netherlands), J.A.W. Webb (St. Bartholomew’s Hospital, United Kingdom). Consultants to the Committee: J-M Ideé (Guerbet, France), P. Lengfeld (Bayer Pharma, Germany), A. Spinazzi (Bracco, Italy). ESUR: www.esur.org

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stacul, F., van der Molen, A.J., Reimer, P. et al. Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur Radiol 21, 2527–2541 (2011). https://doi.org/10.1007/s00330-011-2225-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-011-2225-0

Keywords

MeSH terms

Not MeSH but essential

Navigation