Skip to main content

Advertisement

Log in

Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The diagnostic accuracy of screening for bone metastases was evaluated using whole-body magnetic resonance imaging (WB-MRI) compared with combined fluorodeoxyglucose (FDG) positron emission tomography (PET) and computed tomography (CT) (FDG-PET-CT). In a prospective, blinded study, 30 consecutive patients (18 female, 12 male; 24–76 years) with different oncological diseases and suspected skeletal metastases underwent FDG-PET-CT as well as WB-MRI with the use of parallel imaging (PAT). With a 32-channel scanner, coronal imaging of the entire body and sagittal imaging of the complete spine was performed using T1-weighted and short tau inversion recovery (STIR) sequences in combination. PET-CT was conducted using a low-dose CT for attenuation correction, a PET-emission scan and diagnostic contrast-enhanced CT scan covering the thorax, abdomen and pelvis. Two radiologists read the MRI scans, another radiologist in combination with a nuclear medicine physician read the PET-CT scans, each in consensus. The standard of reference was constituted by radiological follow-up within at least 6 months. In 28 patients, 102 malignant and 25 benign bone lesions were detected and confirmed. WB-MRI showed a sensitivity of 94% (96/102), PET-CT exams achieved 78% (79/102; P<0.001). Specificities were 76% (19/25) for WB-MRI and 80% (20/25) for PET-CT (P>0.05). Diagnostic accuracy was 91% (115/127) and 78% (99/127; P<0.001), respectively. Cut-off size for the detection of malignant bone lesions was 2 mm for WB-MRI and 5 mm for PET-CT. WB-MRI revealed ten additional bone metastases due to the larger field of view. In conclusion, WB-MRI and FDG-PET-CT are robust imaging modalities for a systemic screening for metastatic bone disease. PAT allows WB-MRI bone marrow screening at high spatial resolution and with a diagnostic accuracy superior to PET-CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rubens RD (1998) Bone metastases: the clinical problem. Eur J Cancer 34:210–213

    Article  PubMed  CAS  Google Scholar 

  2. Edelstyn GA, Gillespie PJ, Grebbel FS (1967) The radiological demonstration of osseous metastases: experimental observations. Clin Radiol 18:158–162

    Article  PubMed  CAS  Google Scholar 

  3. Eustace S, Tello R, DeCarvalho V et al (1997) A comparison of whole-body turbo STIR MR imaging and planar 99 m TC-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. Am J Roentgenol 169:1655–1661

    CAS  Google Scholar 

  4. Cheran SK, Herndon JE, Patz EF (2003) Comparison of whole-body FDG-PET to bone scan for detection of bone metastases in patients with a new diagnosis of lung cancer. Lung cancer 44:317–325

    Article  Google Scholar 

  5. Even-Sapir E, Metser U, Flusser G, Zuriel L, Kollender Y, Lerman H (2004) Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 45:272–278

    PubMed  Google Scholar 

  6. Pelosi E, Messa C, Sironi S, Picchio M, Landoni C, Bettinardi V et al (2004) Value of integrated PET/CT for lesion localisation in cancer patients: a comparative study. Eur J Nucl Med Mol Imaging 31:932–939

    Article  PubMed  Google Scholar 

  7. Vanel D, Dromain C, Tardivon A (2000) MRI of bone marrow disorders. Eur Radiol 10:224–229

    Article  PubMed  CAS  Google Scholar 

  8. Imamura F, Kuriyama K, Seto T, Hasegawa Y, Nakayama T, Nakamura S et al (2000) Detection of bone marrow metastases of small cell lung cancer with magnetic resonance imaging: early diagnosis before destruction of osseous structure and implications for staging. Lung Cancer 27:189–197

    Article  PubMed  CAS  Google Scholar 

  9. Daldrup-Link HE, Franzius C, Link TM et al (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. Am J Roentgenol 177:229–236

    CAS  Google Scholar 

  10. Steinborn M, Heuck AF, Tiling R, Bruegel M, Gauger L, Reiser MF (1999) Whole body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 23:123–129

    Article  PubMed  CAS  Google Scholar 

  11. Iizuka-Mikami M, Nagai K, Yoshida K, Sugihara T, Suetsugu Y, Mikami M et al (2004) Detection of bone marrow and extramedullary involvement in patients with non-Hodgkin’s lymphoma by whole-body MRI: comparison with bone and 67Ga scintigraphies. Eur Radiol 14:1074–1081

    Article  PubMed  Google Scholar 

  12. Walker R, Kessar P, Blanchard R, Dimasi M, Harper K, DeCarvalho V et al (2000) Turbo STIR magnetic resonance imaging as a whole-body screening tool for metastases in patients with breast carcinoma: preliminary clinical experience. J Magn Reson Imaging 11:343–350

    Article  PubMed  CAS  Google Scholar 

  13. Mehta RC, Marks MP, Hinks RS, Glover GH, Enzmann DR (1995) MR evaluation of vertebral metatases: T1-weighted short inversion time inversion recovery, fast spin echo, and inversion-recovery fast spin-echo sequences. Am J Neuroradiol 16:281–288

    PubMed  CAS  Google Scholar 

  14. Kellenberger CJ, Miller SF, Khan M, Gilday DL, Weitzman S, Babyn PS et al (2004) Initial experience with FSE STIR whole-body MR imaging for staging lymphoma in children. Eur Radiol 14:1829–1841

    Article  PubMed  Google Scholar 

  15. Mahnken A, Wildberger JE, Adam G, Stanzel S, Schmitz-Rode T, Günther R et al (2005) Is there a need for contrast-enhanced T1-weighted MRI of the spine after inconspicuous short τ inversion recovery imaging? Eur Radiol 15:1387–1392

    Article  PubMed  Google Scholar 

  16. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R et al (2000) A combined PET-CT scanner for clinical oncology. J Nucl Med 42:1369–1379

    Google Scholar 

  17. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The nmr phased array. Magn Reson Med 16:192–225

    Article  PubMed  CAS  Google Scholar 

  18. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    Article  PubMed  CAS  Google Scholar 

  19. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  20. Zech CJ, Hermann KA, Huber A, Dietrich O, Stremmer A, Herzog P et al (2004) High resolution MR imaging of the liver with T2-weighted sequences using integrated parallel imaging: comparison of prospective motion correction and respiratory triggering. J Magn Reson Imaging 20:443–450

    Article  PubMed  Google Scholar 

  21. Brix G, Lechel U, Glatting G, Ziegler SI, Muenzing W, Mueller SP et al (2005) Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG-PET/CT examinations. J Nucl Med 46:608–613

    PubMed  CAS  Google Scholar 

  22. Vanel D, Bittoun J, Tardivon A (1998) A MRI of bone metastases. Eur Radiol 8:1345–1351

    Google Scholar 

  23. Schweitzer ME, Levine C, Mitchell DG, Gannon FH, Gomelia LG (1993) Bull’s eyes and halos: useful MR discriminators of osseous metastases. Radiology 188:249–252

    PubMed  CAS  Google Scholar 

  24. Beggs AD, Hain SF, Curran KM, O’Doherty MJ (2002) FDG-PET as a “metabolic biopsy” tool in non-lung lesions with indeterminate biopsy. Eur J Nucl Med Mol Imaging 29:542–546

    Article  PubMed  CAS  Google Scholar 

  25. Groves AM, Beadsmoore CJ, Cheow HK, Kottekkattu KB, Courtney HM, Kaptoge S et al (2006) Can 16-detector multislice CT exclude skeletal lesions during tumour staging? Implications for the cancer patient. Eur Radiol 10:1–8

    Google Scholar 

  26. Layer G, Steudel A, Schueller H et al (1999) MRI to detect bone marrow metastases in the initial staging of small cell lung carcinoma and breast carcinoma. Cancer 85:1004–1009

    Article  PubMed  CAS  Google Scholar 

  27. Ohta M, Tokuda Y, Suzuki Y et al (2001) Whole body PET fort the evaluation of bony metastases in patients with breast cance: comparison with 99 Tcm-MDP bone scintigraphy. Nucl Med Commun 22:875–879

    Article  PubMed  CAS  Google Scholar 

  28. Moon DH, Maddahi J, Silverman DH et al (1998) Accuracy of whole-body fluorine-18-FDG PET for the detection of recurrent or metastatic breast carcinoma. J Nucl Med 39:431–435

    PubMed  CAS  Google Scholar 

  29. Marom EM, Mc Addams HP, Erasmus JJ et al (1999) Staging non-small cell lung cancer with whole-body PET. Radiology 212:803–809

    PubMed  CAS  Google Scholar 

  30. Metser U, Lerman H, Blank A, Lievshitz G, Bokstein F, Even-Sapir E (2003) Malignant involvement of the spine: assessment by 18FDG-PET-CT. J Nucl Med 45:297–384

    Google Scholar 

  31. Hany TF, Steinert HC, Goerres WG, Buck A, von Schultheiss GK (2002) PET diagnostic accuracy: improvement with in-line PET-CT system: initial results. Radiology 225:575–581

    Article  PubMed  Google Scholar 

  32. Rosenbaum SJ, Lind T, Antoch G, Bockisch A (2005) False-positive FDG-PET uptake—the role of PET/CT. Eur Radiol 17:1–12

    Google Scholar 

  33. Antoch G, Vogt FM, Freudenberg LS, Nazaradeh F, Goehde SC, Barkhausen J et al (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290:3199–3206

    Article  PubMed  CAS  Google Scholar 

  34. Gallowitsch HJ, Kresnik E, Gasser J et al (2003) F-18 fluorodeoxyglucose positron-emission tomography ion the diagnosis of tumor recurrence and metastases in the follow-up of patients with breast carcinoma: a comparison to conventional imaging. Invest Radiol 38:250–256

    Article  PubMed  Google Scholar 

  35. Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I (1998) Detection of bone metastases in breast cancer by 18FDG-PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 16:3375–3379

    PubMed  CAS  Google Scholar 

  36. Krishnamurthy GT, Tubis M, Hiss J, Blahd WH (1977) Distribution pattern of metastatic bone disease. JAMA 237:837–842

    Article  Google Scholar 

  37. Perrin-Resche I, Bizais Y, Buhe T, Fiche M (1993) How iliac crest bone marrow biopsy compare with imaging in the detection of bone metastases in small cell lung cancer? Eur J Nucl Med 20:420–425

    Article  PubMed  CAS  Google Scholar 

  38. Haubold-Reuter BG, Duewell S, Schilcher BR, Marincek B, v Schulthess GK (1993) The value of bone scintigraphy, bone marrow scintigraphy and fast spin-echo magnetic resonance imaging in staging of patients with malignant solid tumors: a prospective study. Eur J Nucl Med 20:1063–1069

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerwin P. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, G.P., Schoenberg, S.O., Schmid, R. et al. Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 17, 939–949 (2007). https://doi.org/10.1007/s00330-006-0361-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0361-8

Keywords

Navigation