Skip to main content
Log in

Der prädiktive Wert der PD-L1-Diagnostik

Predictive value of PD-L1 diagnostics

  • Schwerpunkt: Immunpathologie
  • Published:
Der Pathologe Aims and scope Submit manuscript

An Erratum to this article was published on 29 May 2019

This article has been updated

Zusammenfassung

Immunonkologische Therapien sind mittlerweile Standardbehandlungen für mehrere Tumorentitäten geworden. Viele weitere Indikationen werden zurzeit in klinischen Therapiestudien erforscht. Unter mehreren Biomarkern, wie z. B. Mikrosatelliteninstabilität oder Tumormutationslast, hat sich die Bestimmung der PD-L1(„programmed cell death ligand 1“)-Expression im Tumorgewebe bislang am stärksten in der klinischen Anwendung etabliert. Die PD-L1-Immunhistochemie ist ein obligatorischer prädiktiver Biomarker für bestimmte immunonkologische Behandlungskonzepte beim nichtkleinzelligen Lungenkarzinom, bei Urothelkarzinomen und Kopf-Hals-Karzinomen. Es ist zu erwarten, dass in naher Zukunft weitere Therapien bei Magen- oder Zervix-Karzinomen auch in Europa zugelassen werden, die ebenfalls eine PD-L1-Testung erforderlich machen. Außerdem kann die PD-L1-Bestimmung als fakultativer Biomarker für klinische Entscheidungen hilfreich sein. Die PD-L1-Testung erfordert eine sensitive Immunfärbung über einen breiten dynamischen Bereich mit geeigneten Primärantikörpern und abgestimmten Färbeprotokollen. Für die Auswahl des Untersuchungsmaterials sowie für die Validierung und die fortlaufende Qualitätskontrolle der Färbung sind hohe Standards anzulegen. Die Auswertung erfolgt nach verschiedenen Auswertealgorithmen. Während der TPS („tumor proportion score“) ausschließlich membranäre Färbungen in Tumorzellen bewertet, berücksichtigen CPS („combined positivity score“) und IC-Scoring („immune cell“) auch oder ausschließlich PD-L1-Färbungen in bestimmten Immunzellen. TPS wird vorrangig bei nichtkleinzelligen Lungenkarzinomen, Melanomen und Karzinomen der Kopf-Hals-Region eingesetzt, CPS und IC-Scoring sind Standarduntersuchungen bei Urothelkarzinomen.

Abstract

Immuno-oncology related treatments have become standard of care for many tumor entities. Numerous additional indications are currently under investigation in ongoing clinical trials. Predictive biomarkers include microsatellite instability as well as tumor mutational burden. However, PD-L1 testing by immunohistochemistry (IHC) is already widely established as a biomarker in clinical routine for certain treatment decisions in non-small cell lung cancer, head and neck cancer and in urothelial carcinomas. More applications of that kind are expected to follow. Moreover, PD-L1 testing can provide clinicians with valuable information even if the test is not mandatory (i. e., complementary diagnostics). PD-L1 staining requires a highly specific staining over a broad dynamic range. Sensitive and specific primary antibodies and suitable staining protocols are prerequisite. Selection of appropriate patients’ materials, validation and contiguous quality assurance need to meet the highest standards. There are different scoring algorithms for PD-L1 stainings which are specific to tumor entities and certain clinical decisions. The tumor proportion score (TPS) is a PD-L1 measurement which is applied, for example, to lung cancer, head and neck cancer and melanomas. Within this approach, only membranous staining of tumor cells is regarded as a significant staining. In contrast, the combined positivity score (CPS) and inflammatory cell (IC) scoring include or are restricted to PD-L1 expression in certain inflammatory cells, respectively. CPS and IC scoring are standard measurements of PD-L1 in urothelial carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10

Change history

  • 29 May 2019

    Erratum zu:

    Pathologe 2018

    https://doi.org/10.1007/s00292-018-0507-x

    Bei der Publikation „Der prädiktive Wert der PD-L1-Diagnostik“ fehlt in der dritten Spalte von Tab. 5 am Ende der Formeln sowie in der Legende von Abb. 7 bei der Berechnung des CPS (50 + 250)/350 × 100 = 85 jeweils der Faktor …

Literatur

  1. U. S. Food and Drug Administration. https://www.fda.gov/drugs/informationondrugs/approveddrugs/. Zugegriffen: 10. Juli 2018

  2. Daud A, Ribas A, Robert C et al (2015) Long-term efficacy of pembrolizumab in a pooled analysis of 655 patiants with advanced melanoma enrolled in KEYNOTE-001. J Clin Oncol 33(15):9005

    Article  Google Scholar 

  3. Gettinger SN, Horn L, Gandhi L et al (2015) Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS -936558, ONO-4538) in patinets with previously treated advanced non-small cell lung cancer. J Clin Oncol 33:2004–2012

    Article  CAS  Google Scholar 

  4. Wolchok JD, Chiarion-Sileni V, Gonzalez R et al (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377:1345–1356

    Article  CAS  Google Scholar 

  5. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421

    Article  CAS  Google Scholar 

  6. Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128

    Article  CAS  Google Scholar 

  7. Kroemer G, Zitvogel L (2018) Cancer immunotherapy in 2017: The breakthrough of the microbiota. Nature Rev. Immunol 18:87–88

    CAS  Google Scholar 

  8. Sweis RF, Spranger S, Bao R, Paner GP, Stadler WM, Steinberg G, Gajewski TF (2016) Molecular Drivers of the Non-T-cell-Inflamed Tumor Microenvironment in Urothelial Bladder Cancer. Cancer Immunol Res 4:563–568

    Article  CAS  Google Scholar 

  9. Chalmers ZR, Connelly CF, Fabrizio D et al (2017) Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9:34

    Article  Google Scholar 

  10. Peters S et al (2017) Oral presentation at AACR. CT, Bd. 082

    Google Scholar 

  11. Socinski MA, Jotte RM, Capuzzo F et al (2018) Atezolizumab for first-line treatment of metastatic non-squamous NSCLC. N Engl J Med 378:2288–2301

    Article  CAS  Google Scholar 

  12. Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34

    Article  Google Scholar 

  13. Skov BG, Skov T (2017) Paired comparison of PD-L1 expression on cytologic and histologic specimens from malignancies in the lung assessed with PD-L1 IHC 28-8pharmDx and PD-L1 IHC 22C3pharmDx. Appl Immunohistochem Mol Morphol 25:453–459

    Article  CAS  Google Scholar 

  14. Munari E, Zamboni G, Lunardi G et al (2018) PD-L1 expression comparison between primary and relapsed non-small cell lung carcinoma using whole sections and clone SP263. Oncotarget 9:30465–30471

    PubMed  PubMed Central  Google Scholar 

  15. Deng L, Liang H, Burnette B et al (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124:687–695

    Article  CAS  Google Scholar 

  16. Zhang P, Su DM, Liang M, Fu J (2008) Chemopreventive agents induce programmed death-1-ligand 1 (PD-L1) surface expression in breast cancer cells and promote PD-L1-mediated T cell apoptosis. Mol Immunol 45:1470–1476

    Article  CAS  Google Scholar 

  17. Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639

    Article  CAS  Google Scholar 

  18. Garon EB, Rizvi NA, Hui R et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028

    Article  Google Scholar 

  19. Scheel AH, Dietel M, Heukamp LC et al (2016) Harmonized PD-L1 immunohistochemistry for pulmonary squamous-cell and adenocarcinomas. Mod Pathol 29:1165–1172

    Article  CAS  Google Scholar 

  20. Scheel AH, Dietel M, Heukamp LC et al (2016) Predictive PD-L1 immunohistochemistry for non-small cell lung cancer : Current state of the art and experiences of the first German harmonization study. Pathologe 37:557–567

    Article  CAS  Google Scholar 

  21. Scheel AH, Baenfer G, Baretton G et al (2018) Interlaboratory concordance of PD-L1 immunohistochemistry for non-small-cell lung cancer. Histopathology 72:449–459

    Article  Google Scholar 

  22. Hirsch FR, McElhinny A, Stanforth D et al (2017) PD-L1 immunohistochemistry assays for lung vancer: Results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol 12:208–222

    Article  Google Scholar 

  23. Griesinger F, Eberhardt W, Marschner N et al (2017) Großangelegtes Registerprojekt CRISP – Dokumentation eines rasanten Therapiewandels am Beispiel NSCLC im Stadium IV und IIIB mit palliativer Intention. Forum Fam Plan West Hemisph 32:157–159

    Google Scholar 

  24. Qualitätssicherungsinitiative Pathologie GmbH https://quip.eu/de_DE/. Zugegriffen: 18. Juli 2018

  25. Nordic immunohistochemical Quality Control (NordiQC). www.nordiqc.org. Zugegriffen: 18 Juli 2018.

  26. The UK national external quality assessment scheme for immunocytochemistry and in situ hybridization (ICC & ISH). http://www.ukneqasiccish.org/. Zugegriffen: 18. Juli 2018

  27. http://www.ventana.com/documents/PD-L1_SP142-UC-Brochure.pdf. Zugegriffen: 18. Juli 2018

  28. Daud AI, Wolchok JD, Robert C et al (2016) Programmed death-ligand 1 expression and response to the anti-programmed death 1 antibody pembrolizumab in melanoma. J Clin Oncol 34:4102–4109

    Article  CAS  Google Scholar 

  29. European Medicines Agency. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/landing/epar_search.jsp&mid=WC0b01ac058001d124. Zugegriffen: 18. Juli 2018

  30. Koppel C, Schwellenbach H, Zielinski D et al (2018) Optimization and validation of PD-L1 immunohistochemistry staining protocols using the antibody clone 28-8 on different staining platforms. Mod Pathol. https://doi.org/10.1038/s41379-018-0071-1

    Article  PubMed  Google Scholar 

  31. Herbst RS, Baas P, Kim DW et al (2016) Pembrolizumab versus docextal for previously treated, PD-L1 positive, advanced non-small cell lung cancer (Keynote-010): a randomized controlled trial. Lancet 387:1540–1550

    Article  CAS  Google Scholar 

  32. Reck M, Roderiguez-Abreu D, Robinsson AG et al (2016) Pembrolizumab versus Chemotherapy for PD-L1 positive Non-Small—Cell Lung Cancer. N Engl J Med 375:1–11

    Article  Google Scholar 

  33. Fuchs CS, Doi T, Woo-Jun Jang R et al (2017) KEYNOTE-059 cohort 1: Efficacy and safety of pembrolizumab (pembro) monotherapy in patients with previously treated advanced gastric cancer. J Clin Oncol 4003. https://doi.org/10.1200/JCO.2017.35.15_suppl.4003

    Article  PubMed  PubMed Central  Google Scholar 

  34. O’Donnell PH, Grivas P, Balar AV et al (2017) Biomarker findings and mature clinical results from KEYNOTE-052: First-line pembrolizumab (pembro) in cisplatin-ineligible advanced urothelial cancer. J Clin Oncol 4502. https://doi.org/10.1200/JCO.2017.35.15_suppl.4502

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-U. Schildhaus.

Ethics declarations

Interessenkonflikt

H.-U. Schildhaus gibt folgende potenziellen Interessenskonflikte an: Mitarbeiter der Targos Molecular Pathology GmbH, Kassel. Honorare: BMS, MSD, Roche, Pfizer, Novartis Oncology, Zytomed Systems. Lead/panel Institut für die QuIP GmbH, Assessor für NordiQC und UKNequas.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Additional information

Schwerpunktherausgeber

W. Roth, Mainz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schildhaus, HU. Der prädiktive Wert der PD-L1-Diagnostik. Pathologe 39, 498–519 (2018). https://doi.org/10.1007/s00292-018-0507-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-018-0507-x

Schlüsselwörter

Keywords

Navigation