Skip to main content
Log in

Molekulardiagnostik des nichtkleinzelligen Lungenkarzinoms

Neue Marker und Technologien

Molecular diagnostics of non-small cell lung cancer

New markers and technologies

  • Schwerpunkt: Molekularpathologie
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Das Lungenkarzinom gilt als Paradetumor für eine anhand prädiktiver Gewebediagnostik vorgenommene, stratifizierende Therapie und stellt daher zurzeit die Modellentität für die Entwicklung neuer diagnostischer und therapeutisch-individualisierter Behandlungsstrategien dar. Neue Entwicklungen sind hier insbesondere im Bereich prädiktiver Biomarker für konventionelle Chemotherapie, gezielte definierte genomische Alterationen adressierende Therapeutika, aber auch für neue immunmodulatorische Medikamente zu erwarten. Die sich ständig weiterentwickelnde Vielfalt an prädiktiven Biomarkern stellt hohe Anforderungen an die Implementierung effizienter Teststrategien und neuer technischer Methoden, um eine umfassende Analytik an dem im Lungenkarzinomkontext regelhaft spärlich zur Verfügung stehenden Gewebematerial zu ermöglichen. In der hier vorliegenden Arbeit werden sowohl inhaltliche als auch technische Aspekte dieser Entwicklung beleuchtet.

Abstract

Lung cancer is the prototypical tumor entity for the development of new diagnostic and individualized therapeutic strategies based on molecular patient stratification. Developments in this field specifically concentrate on predictive biomarkers for the response to conventional therapeutic agents, novel drugs targeting specific mutations and also new immunomodulatory drugs. The multitude of upcoming new predictive biomarkers requires the development and implementation of efficient test strategies and comprehensive technical methods, specifically when tissue restrictions inherent to lung cancer diagnostics are also taken into account. Novel procedures and technical aspects of these issues are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Abbreviations

ALK:

Anaplastische Lymphomkinase

BRAF:

B-Raf-Protoonkogen

CISH:

Chromogene In-situ-Hybridisierung

CTLA4:

„Cytotoxic T-lymphocyte-associated protein 4“

DDR2:

„Discoidin domain-containing receptor 2“

DNA:

Desoxyribonukleinsäure

EGFR:

Epidermaler Wachstumsfaktorrezeptor („epidermal growth factor receptor“)

ERCC1:

„Excision repair cross-complementing rodent repair deficiency, complementation group 1“

FFPE:

Formalin-fixiert and Paraffin-eingebettet

FGFR:

Fibroblastenwachstumsfaktorrezeptor („fibroblast growth factor receptor“)

FISH:

Fluoreszenz-in-situ-Hybridisierung

KIT:

Protoonkogen-c-KIT

KRAS:

„Kirsten rat sarcoma viral oncogene homolog“

MALDI:

„Matrix-assisted laser desorption/ionization“

MEK:

Mitogen-aktivierte Proteinkinase

MPS:

Massive parallele Sequenzierung

NGS:

„Next generation sequencing“

NOS:

Nicht anderweitig spezifiziert („not otherwise specified“)

NSCLC:

Nichtkleinzelliges Lungenkarzinom („non-small cell lung cancer“)

PCR:

Polymerasekettenreaktion

PD-1:

„Programmed cell death protein 1“

PD-L1:

„Programmed death-ligand 1“

PI3K:

Phosphoinositid-3-Kinase

RET:

RET-Protoonkogen

RNA:

Ribonukleinsäure

ROS1:

ROS-Protoonkogen 1

RRM1:

„Ribonucleotide reductase M1“

SCLC:

Kleinzelliges Lungenkarzinom („small cell lung cancer“)

Literatur

  1. Anonymous (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525

    Article  Google Scholar 

  2. Anonymous (2013) A genomics-based classification of human lung tumors. Sci Transl Med 5:209ra153

    Google Scholar 

  3. Beau-Faller M, Gaub MP, Schneider A et al (2003) Plasma DNA microsatellite panel as sensitive and tumor-specific marker in lung cancer patients. Int J Cancer 105:361–370

    Article  CAS  PubMed  Google Scholar 

  4. Bepler G, Williams C, Schell MJ et al (2013) Randomized international phase III trial of ERCC1 and RRM1 expression-based chemotherapy versus gemcitabine/carboplatin in advanced non-small-cell lung cancer. J Clin Oncol 31:2404–2412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Besse B, Olaussen KA, Soria JC (2013) ERCC1 and RRM1: Ready for Prime Time? J Clin Oncol 31:1050–1060

    Article  CAS  PubMed  Google Scholar 

  6. Bos M, Gardizi M, Schildhaus HU et al (2013) Complete metabolic response in a patient with repeatedly relapsed non-small cell lung cancer harboring ROS 1 gene rearrangement after treatment with crizotinib. Lung Cancer 81:142–143

    Article  CAS  PubMed  Google Scholar 

  7. Camidge DR, Bang YJ, Kwak EL et al (2012) Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol 13:1011–1019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Casadonte R, Kriegsmann M, Zweynert F et al (2014) Imaging mass spectrometry to discriminate breast from pancreatic cancer metastasis in formalin-fixed paraffin-embedded tissues. Proteomics 14:956–964

    Article  CAS  PubMed  Google Scholar 

  9. Cortot AB, Janne PA (2014) Molecular mechanisms of resistance in epidermal growth factor receptor-mutant lung adenocarcinomas. Eur Respir Rev 23:356–366

    Article  PubMed  Google Scholar 

  10. Endris V, Penzel R, Warth A et al (2013) Molecular diagnostic profiling of lung cancer specimens with a semiconductor-based massive parallel sequencing approach: feasibility, costs, and performance compared with conventional sequencing. J Mol Diagn 15:765–775

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez-Cuesta L, Peifer M, Lu X et al (2014) Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nat Commun 5:3518

    Article  PubMed Central  PubMed  Google Scholar 

  12. Findeisen P, Neumaier M (2009) Mass spectrometry-based clinical proteomics profiling: current status and future directions. Expert Rev Proteomics 6:457–459

    Article  CAS  PubMed  Google Scholar 

  13. Fleischhacker M, Schmidt B (2007) Circulating nucleic acids (CNAs) and cancer – a survey. Biochim Biophys Acta 1775:181–232

    CAS  PubMed  Google Scholar 

  14. Fournie GJ, Courtin JP, Laval F et al (1995) Plasma DNA as a marker of cancerous cell death. Investigations in patients suffering from lung cancer and in nude mice bearing human tumours. Cancer Lett 91:221–227

    Article  CAS  PubMed  Google Scholar 

  15. Friboulet L, Olaussen KA, Pignon JP et al (2013) ERCC1 isoform expression and DNA repair in non-small-cell lung cancer. N Engl J Med 368:1101–1110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Gautschi O, Bigosch C, Huegli B et al (2004) Circulating deoxyribonucleic Acid as prognostic marker in non-small-cell lung cancer patients undergoing chemotherapy. J Clin Oncol 22:4157–4164

    Article  CAS  PubMed  Google Scholar 

  17. Groschel A, Warth A, Reinmuth N (2013) Crizotinib – molecular therapy for lung cancer. Pneumologie 67:205–208

    Article  CAS  PubMed  Google Scholar 

  18. Herpel E, Schnabel PA, Steins M et al (2012) Assessment of thymidylate synthase expression in biopsy specimens and corresponding resection specimens of non-small-cell lung cancer. Histopathology 61:465–472

    Article  PubMed  Google Scholar 

  19. Herth FJ, Bubendorf L, Gutz S et al (2013) Diagnostic and predictive analyses of cytological specimens of non-small cell lung cancer: strategies and challenges. Pneumologie 67:198–204

    Article  CAS  PubMed  Google Scholar 

  20. Hirsch FR, Janne PA, Eberhardt WE et al (2013) Epidermal growth factor receptor inhibition in lung cancer: status 2012. J Thorac Oncol 8:373–384

    CAS  PubMed  Google Scholar 

  21. Imielinski M, Berger AH, Hammerman PS et al (2012) Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150:1107–1120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Jahr S, Hentze H, Englisch S et al (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61:1659–1665

    CAS  PubMed  Google Scholar 

  23. Jamal-Hanjani M, Hackshaw A, Ngai Y et al (2014) Tracking genomic cancer evolution for precision medicine: the lung TRACERx study. PLoS Biol 12:e1001906

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kim Y, Hammerman PS, Kim J et al (2014) Integrative and comparative genomic analysis of lung squamous cell carcinomas in East asian patients. J Clin Oncol 32:121–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kimura H, Suminoe M, Kasahara K et al (2007) Evaluation of epidermal growth factor receptor mutation status in serum DNA as a predictor of response to gefitinib (IRESSA). Br J Cancer 97:778–784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kossakowski CA, Morresi-Hauf A, Schnabel PA et al (2014) Preparation of cell blocks for lung cancer diagnosis and prediction: protocol and experience of a high-volume center. Respiration 87:432–438

    CAS  PubMed  Google Scholar 

  27. Kris MG, Johnson BE, Berry LD et al (2014) Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311:1998–2006

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lederlin M, Puderbach M, Muley T et al (2013) Correlation of radio- and histomorphological pattern of pulmonary adenocarcinoma. Eur Respir J 41:943–951

    Article  PubMed  Google Scholar 

  29. Leon SA, Shapiro B, Sklaroff DM et al (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37:646–650

    CAS  PubMed  Google Scholar 

  30. M VL, Warth A, Penzel R et al (2013) Anaplastic lymphoma kinase (ALK) gene rearrangement in non-small cell lung cancer (NSCLC): results of a multi-centre ALK-testing. Lung cancer 81:200–206

    Article  Google Scholar 

  31. Mandel P (1940) Les acides nucleiques du plasma sanguine chez l’homme. C R Acad Sci Paris 142:241–253

  32. Muley TR, Sianidou M, Thomas M et al (2014) Comparison of two ERCC1 antibodies as prognostic and predictive biomarkers for early non-small cell lung cancer. Anticancer Res 34:3707–3713

    PubMed  Google Scholar 

  33. Ohashi K, Maruvka YE, Michor F et al (2013) Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease. J Clin Oncol 31:1070–1080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Olaussen KA, Dunant A, Fouret P et al (2006) DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355:983–991

    Article  CAS  PubMed  Google Scholar 

  35. Pantel K, Alix-Panabieres C (2013) Real-time liquid biopsy in cancer patients: fact or fiction? Cancer Res 73:6384–6388

    Article  CAS  PubMed  Google Scholar 

  36. Peifer M, Fernandez-Cuesta L, Sos ML et al (2012) Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 44:1104–1110

    Article  CAS  PubMed  Google Scholar 

  37. Reynolds C, Obasaju C, Schell MJ et al (2009) Randomized phase III trial of gemcitabine-based chemotherapy with in situ RRM1 and ERCC1 protein levels for response prediction in non-small-cell lung cancer. J Clin Oncol 27:5808–5815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Rosell R, Carcereny E, Gervais R et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13:239–246

    Article  CAS  PubMed  Google Scholar 

  39. Roth JA, Carlson JJ (2011) Prognostic role of ERCC1 in advanced non-small-cell lung cancer: a systematic review and meta-analysis. Clin Lung Cancer 12:393–401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Scagliotti GV, Parikh P, Von Pawel J et al (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 26:3543–3551

    Article  CAS  PubMed  Google Scholar 

  41. Shapiro B, Chakrabarty M, Cohn EM et al (1983) Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer 51:2116–2120

    Article  CAS  PubMed  Google Scholar 

  42. Shaw AT, Engelman JA (2013) ALK in lung cancer: past, present, and future. J Clin Oncol 31:1105–1111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Shaw AT, Ou SH, Bang YJ et al (2014) Crizotinib in ROS 1-rearranged non-small-cell lung cancer. N Engl J Med 371:1963–1971

    Article  CAS  PubMed  Google Scholar 

  44. Soda M, Choi YL, Enomoto M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566

    Article  CAS  PubMed  Google Scholar 

  45. Sozzi G, Conte D, Mariani L et al (2001) Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Res 61:4675–4678

    CAS  PubMed  Google Scholar 

  46. Stenzinger A, Penzel R, Endris V et al (2013) Molecular diagnostics in pathology. Dtsch Med Wochenschr 138:1061–1068

    Article  CAS  PubMed  Google Scholar 

  47. Stroun M, Maurice P, Vasioukhin V et al (2000) The origin and mechanism of circulating DNA. Ann N Y Acad Sci 906:161–168

    Article  CAS  PubMed  Google Scholar 

  48. Taniguchi K, Uchida J, Nishino K et al (2011) Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res 17:7808–7815

    Article  CAS  PubMed  Google Scholar 

  49. Travis WD, Brambilla E, Noguchi M et al (2011) International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6:244–285

    Article  PubMed  Google Scholar 

  50. Von Laffert M, Penzel R, Schirmacher P et al (2014) Multicenter ALK testing in non-small-cell lung cancer: results of a round robin test. J Thorac Oncol 81:200–206

  51. Wang T, Chuan Pan C, Rui Yu J et al (2013) Association between TYMS expression and efficacy of pemetrexed-based chemotherapy in advanced non-small cell lung cancer: a meta-analysis. PloS One 8:e74284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Warth A, Endris V, Penzel R et al (2014) Molecular pathology of lung cancer: State of the art 2014. Pathologe 35:565–573

    Article  CAS  PubMed  Google Scholar 

  53. Warth A, Muley T, Dienemann H et al (2014) ROS 1 expression and translocations in non-small-cell lung cancer: clinicopathological analysis of 1478 cases. Histopathology 65:187–194

    Article  PubMed  Google Scholar 

  54. Warth A, Muley T, Herpel E et al (2012) Large-scale comparative analyses of immunomarkers for diagnostic subtyping of non-small-cell lung cancer biopsies. Histopathology 61:1017–1025

    Article  PubMed  Google Scholar 

  55. Warth A, Muley T, Meister M et al (2012) The novel histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification system of lung adenocarcinoma is a stage-independent predictor of survival. J Clin Oncol 30:1438–1446

    Article  PubMed  Google Scholar 

  56. Warth A, Muley T, Meister M, Weichert W et al (2015) Preanalytics in lung cancer. Recent Results Cancer Res 199:71–84

  57. Warth A, Penzel R, Brandt R et al (2012) Optimized algorithm for Sanger sequencing-based EGFR mutation analyses in NSCLC biopsies. Virchows Arch 460:407–414

    Article  CAS  PubMed  Google Scholar 

  58. Warth A, Penzel R, Lindenmaier H et al (2014) EGFR, KRAS, BRAF and ALK gene alterations in lung adenocarcinomas: patient outcome, interplay with morphology and immunophenotype. Eur Respir J 43:872–883

    Article  CAS  PubMed  Google Scholar 

  59. Warth A, Stenzinger A, Weichert W (2013) Novel morphological and molecular aspects of lung cancer. Pathologe 34:419–428

    Article  CAS  PubMed  Google Scholar 

  60. Weichert W, Warth A (2014) Early lung cancer with lepidic pattern: adenocarcinoma in situ, minimally invasive adenocarcinoma, and lepidic predominant adenocarcinoma. Curr Opin Pulm Med 20:309–316

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Wir danken Dr. Rita Casadonte (Pathologie Trier) für die exzellente technische Unterstützung bei den massenspektrometrischen Untersuchungen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Weichert.

Ethics declarations

Interessenkonflikt

A. Warth, V. Endris, M. Kriegsmann, A. Stenzinger, R. Penzel, N. Pfarr, W. Weichert geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Schwerpunktherausgeber

C. Röcken, Kiel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warth, A., Endris, V., Kriegsmann, M. et al. Molekulardiagnostik des nichtkleinzelligen Lungenkarzinoms. Pathologe 36, 154–163 (2015). https://doi.org/10.1007/s00292-015-0004-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-015-0004-4

Schlüsselwörter

Keywords

Navigation