Skip to main content
Log in

Molekularpathologie des Lungenkarzinoms

„State of the art“ 2014

Molecular pathology of lung cancer

State of the art 2014

  • Schwerpunkt
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Lungenkarzinome sind die am häufigsten zum Tode führenden Tumoren in Deutschland sowohl bei Männern als auch bei Frauen. Während jahrzehntelang eine Einteilung dieser Tumoren in nichtkleinzellige und kleinzellige Karzinome aus therapeutischer Sicht ausreichend erschien, hat die angebrochene Ära der personalisierten Medizin gemeinsam mit neuesten Entwicklungen im Bereich der Hochdurchsatztechnologien zu einer „molekularen“ Individualisierung dieser Tumoren und, noch wesentlich bedeutender, einer molekular gesteuerten Individualisierung der Tumortherapie geführt. Diese Entwicklung mündete in eine Auffächerung der großen histologisch definierten Entitätsgruppen der Lungenkarzinome in einen bunten Strauß molekular recht divergenter Tumorgruppen. Die entsprechenden molekularpathologischen Erkenntnisse werden in diesem Artikel für Adenokarzinome, Plattenepithelkarzinome und großzellige Karzinome sowie für kleinzellige Karzinome und Karzinoide kursorisch beleuchtet. Neben einigen wenigen Gemeinsamkeiten in der molekularen Genese dieser Neoplasien ergeben die Daten der letzten Jahre hierbei eine erstaunliche Vielfalt unterschiedlicher Treiberereignisse, die jeweils zum manifesten Tumorgeschehen führen können. Die Kenntnis und in einigen Fällen auch Diagnostik dieser Alterationen sind in der Pathologie von hoher Bedeutung, da sich aus ihnen zunehmend klinisch relevante Therapieentscheidungen ableiten. Damit rückt die Molekularpathologie ins Zentrum einer neuen Ära personalisierter Medizin in der Onkologie.

Abstract

Lung cancer is the most frequent cause of cancer-related death in Germany in men and women alike. While in the last decades a classification of epithelial lung tumors into non-small cell and small cell lung cancer was clearly sufficient from the therapeutic viewpoint, the dawn of the era of personalized medicine together with tremendous developments in the field of high throughput technologies have led to a molecular individualization of these tumors and, even more important, to a molecularly defined individualization of tumor therapy. This development resulted in the definition of a wide array of molecularly divergent tumor families. In this article we will give an overview on relevant molecular alterations in non-small cell lung cancers, comprising adenocarcinomas, squamous cell carcinomas and large cell carcinomas and also small cell carcinomas and carcinoids. Besides some similarities data gathered in the last few years specifically highlighted the immense diversity of molecular alterations that might underlie tumorigenesis of lung neoplasms. The knowledge on how to detect these alterations is of utmost importance in pathology, as treatment decisions are increasingly based on their presence or absence, putting molecular pathology in the central focus of the novel era of personalized medicine in oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Cancer Genome Atlas Research Network (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525

    Article  Google Scholar 

  2. Clinical Lung Cancer Genome Project (CLCGP), Network Genomic Medicine (NGM) (2013) A genomics-based classification of human lung tumors. Sci Transl Med 5:209ra153

    Google Scholar 

  3. Drilon A, Rekhtman N, Ladanyi M et al (2012) Squamous-cell carcinomas of the lung: emerging biology, controversies, and the promise of targeted therapy. Lancet Oncol 13:e418–e426

    Article  CAS  PubMed  Google Scholar 

  4. Fernandez-Cuesta L, Plenker D, Osada H et al (2014) CD74-NRG1 fusions in lung adenocarcinoma. Cancer Discov 4:415–422

    Article  CAS  PubMed  Google Scholar 

  5. Fernandez-Cuesta L, Peifer M, Lu X, et al (2014) Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nat Commun 5:3518

    Article  PubMed Central  PubMed  Google Scholar 

  6. Guo C, Chang CC, Wortham M et al (2012) Global identification of MLL2-targeted loci reveals MLL2’s role in diverse signaling pathways. Proc Natl Acad Sci U S A 109:17603–17608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hayes DN, Monti S, Parmigiani G et al (2006) Gene expression profiling reveals reproducible human lung adenocarcinoma subtypes in multiple independent patient cohorts. J Clin Oncol 24:5079–5090

    Article  CAS  PubMed  Google Scholar 

  8. Hirsch FR, Janne PA, Eberhardt WE et al (2013) Epidermal growth factor receptor inhibition in lung cancer: status 2012. J Thorac Oncol 8:373–384

    CAS  PubMed  Google Scholar 

  9. Jaramillo MC, Zhang DD (2013) The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 27:2179–2191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Jones MH, Virtanen C, Honjoh D et al (2004) Two prognostically significant subtypes of high-grade lung neuroendocrine tumours independent of small-cell and large-cell neuroendocrine carcinomas identified by gene expression profiles. Lancet 363:775–781

    Article  CAS  PubMed  Google Scholar 

  11. Kalari S, Jung M, Kernstine KH et al (2013) The DNA methylation landscape of small cell lung cancer suggests a differentiation defect of neuroendocrine cells. Oncogene 32:3559–3568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Karpathakis A, Dibra H, Thirlwell C (2013) Neuroendocrine tumours: cracking the epigenetic code. Endocr Relat Cancer 20:R65–R82

    Article  CAS  PubMed  Google Scholar 

  13. Kim Y, Hammerman PS, Kim J et al (2014) Integrative and comparative genomic analysis of lung squamous cell carcinomas in East asian patients. J Clin Oncol 32:121–128

    Article  CAS  PubMed  Google Scholar 

  14. Liebler DC, Guengerich FP (2005) Elucidating mechanisms of drug-induced toxicity. Nat Rev Drug Discov 4:410–420

    Article  CAS  PubMed  Google Scholar 

  15. Liloglou T, Bediaga NG, Brown BR et al (2014) Epigenetic biomarkers in lung cancer. Cancer Lett 342:200–212

    Article  CAS  PubMed  Google Scholar 

  16. Mehlen P, Delloye-Bourgeois C, Chedotal A (2011) Novel roles for slits and netrins: axon guidance cues as anticancer targets? Nat Rev Cancer 11:188–197

    Article  CAS  PubMed  Google Scholar 

  17. Miko E, Czimmerer Z, Csanky E et al (2009) Differentially expressed microRNAs in small cell lung cancer. Exp Lung Res 35:646–664

    Article  CAS  PubMed  Google Scholar 

  18. Ollila S, Makela TP (2011) The tumor suppressor kinase LKB1: lessons from mouse models. J Mol Cell Biol 3:330–340

    Article  CAS  PubMed  Google Scholar 

  19. Peifer M, Fernandez-Cuesta L, Sos ML et al (2012) Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 44:1104–1110

    Article  CAS  PubMed  Google Scholar 

  20. Pickering CR, Zhang J, Yoo SY et al (2013) Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov 3:770–781

    Article  CAS  PubMed  Google Scholar 

  21. Ranade AR, Cherba D, Sridhar S et al (2010) MicroRNA 92a-2*: a biomarker predictive for chemoresistance and prognostic for survival in patients with small cell lung cancer. J Thorac Oncol 5:1273–1278

    Article  PubMed  Google Scholar 

  22. Rekhtman N, Tafe LJ, Chaft JE et al (2013) Distinct profile of driver mutations and clinical features in immunomarker-defined subsets of pulmonary large-cell carcinoma. Mod Pathol 26:511–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sachithanandan N, Harle RA, Burgess JR (2005) Bronchopulmonary carcinoid in multiple endocrine neoplasia type 1. Cancer 103:509–515

    Article  PubMed  Google Scholar 

  24. Saito K, Kawakami K, Matsumoto I et al (2010) Long interspersed nuclear element 1 hypomethylation is a marker of poor prognosis in stage IA non-small cell lung cancer. Clin Cancer Res 16:2418–2426

    Article  CAS  PubMed  Google Scholar 

  25. Saldivar JC, Miuma S, Bene J et al (2012) Initiation of genome instability and preneoplastic processes through loss of Fhit expression. PLoS Genet 8:e1003077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Saldivar JC, Shibata H, Huebner K (2010) Pathology and biology associated with the fragile FHIT gene and gene product. J Cell Biochem 109:858–865

    CAS  PubMed  Google Scholar 

  27. Sandoval J, Mendez-Gonzalez J, Nadal E et al (2013) A prognostic DNA methylation signature for stage I non-small-cell lung cancer. J Clin Oncol 31:4140–4147

    Article  PubMed  Google Scholar 

  28. Siegel R, Ma J, Zou Z et al (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29

    Article  PubMed  Google Scholar 

  29. Sos ML, Dietlein F, Peifer M et al (2012) A framework for identification of actionable cancer genome dependencies in small cell lung cancer. Proc Natl Acad Sci U S A 109:17034–17039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Stenzinger A, Penzel R, Endris V et al (2013) Molecular diagnostics in pathology. Dtsch Med Wochenschr 138:1061–1068

    Article  CAS  PubMed  Google Scholar 

  31. Swarts DR, Claessen SM, Jonkers YM et al (2011) Deletions of 11q22.3-q25 are associated with atypical lung carcinoids and poor clinical outcome. Am J Pathol 179:1129–1137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Swarts DR, Ramaekers FC, Speel EJ (2012) Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities. Biochim Biophys Acta 1826:255–271

    CAS  PubMed  Google Scholar 

  33. Swarts DR, Scarpa A, Corbo V et al (2014) MEN1 Gene mutation and reduced expression are associated with poor prognosis in pulmonary carcinoids. J Clin Endocrinol Metab 99(2):E374–378

    Article  CAS  PubMed  Google Scholar 

  34. Swarts DR, Van Neste L, Henfling ME et al (2013) An exploration of pathways involved in lung carcinoid progression using gene expression profiling. Carcinogenesis 34:2726–2737

    Article  CAS  PubMed  Google Scholar 

  35. Wang S, Wang Z (2013) Epigenetic aberrant methylation of tumor suppressor genes in small cell lung cancer. J Thorac Dis 5:532–537

    PubMed Central  PubMed  Google Scholar 

  36. Warth A, Herpel E, Krysa S et al (2009) Chromosomal instability is more frequent in metastasized than in non-metastasized pulmonary carcinoids but is not a reliable predictor of metastatic potential. Exp Mol Med 41:349–353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Warth A, Penzel R, Lindenmaier H et al (2013) EGFR, KRAS, BRAF and ALK Gene alterations in lung adenocarcinomas: patient outcome, interplay with morphology and immunophenotype. Eur Respir J 43(3):872–883

    Article  PubMed  Google Scholar 

  38. Warth A, Stenzinger A, Weichert W (2013) Novel morphological and molecular aspects of lung cancer. Pathologe 34:419–428

    Article  CAS  PubMed  Google Scholar 

  39. Weiss J, Sos ML, Seidel D et al (2010) Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med 2:62ra93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Wilkerson MD, Yin X, Hoadley KA et al (2010) Lung squamous cell carcinoma mRNA expression subtypes are reproducible, clinically important, and correspond to normal cell types. Clin Cancer Res 16:4864–4875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Wilkerson MD, Yin X, Walter V et al (2012) Differential pathogenesis of lung adenocarcinoma subtypes involving sequence mutations, copy number, chromosomal instability, and methylation. PloS One 7:e36530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yamaguchi T, Hosono Y, Yanagisawa K et al (2013) NKX2–1/TTF-1: an enigmatic oncogene that functions as a double-edged sword for cancer cell survival and progression. Cancer Cell 23:718–723

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. W. Weichert, A. Warth, V. Endris und R. Penzel geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Weichert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warth, A., Endris, V., Penzel, R. et al. Molekularpathologie des Lungenkarzinoms. Pathologe 35, 565–573 (2014). https://doi.org/10.1007/s00292-014-1918-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-014-1918-y

Schlüsselwörter

Keywords

Navigation