Skip to main content
Log in

Knochenmarkbiopsie

Aufarbeitung und Einsatzmöglichkeiten molekularpathologischer Methoden

Bone marrow biopsy

Processing and use of molecular techniques

  • Schwerpunkt
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Die rasche methodische Weiterentwicklung immunhistochemischer und molekularpathologischer Verfahren hat auch beträchtliche Auswirkungen auf die Diagnostik an der Knochenmarkstanze. Die Erzielung einer möglichst guten Morphologie bei gleichzeitigem Erhalt der Gewebsantigenität und der Integrität der DNS für molekulare Untersuchungen einerseits und der Wunsch auf zeitnahe Bearbeitung andererseits erfordern einen sorgfältig geplanten Arbeitsablauf für Fixierung, Entkalkung und Einbettung des Trepanats. Dabei stellt die Fixierung in gepuffertem Formalin kombiniert mit der EDTA-Entkalkung einen sehr guten Kompromiss dar, der einen Einsatz aller modernen Techniken ohne Einschränkungen erlaubt. Obwohl sehr viele molekulargenetische Untersuchungen am Aspirat oder an Zellen aus dem peripheren Blut durchgeführt werden, gibt es doch Fragestellungen, bei denen molekularpathologische Analysen wie die Klonalitätsbestimmung bei lymphatischen Knochenmarkinfiltraten oder der Nachweis spezifischer Mutationen am Trepanat notwendig werden. Aufgrund der besonderen Materialgegebenheiten sind insbesondere für die Klonalitätsbestimmung eine zuverlässige Qualitätskontrolle und eine genaue Kenntnis der biologischen und technischen Fehlerquellen notwendig. Diese Übersichtsarbeit gibt einen Überblick über technische Aspekte der Aufarbeitung und diskutiert die Anwendung und Einsatzmöglichkeiten molekularpathologischer Methoden an der Knochenmarkbiopsie.

Abstract

The rapid technological development in diagnostic pathology, especially of immunohistochemical and molecular techniques, also has a significant impact on diagnostic procedures for the evaluation of bone marrow trephine biopsies. The necessity for optimal morphology, combined with preservation of tissue antigens and nucleic acids on one hand and the wish for short turnaround times on the other hand require careful planning of the workflow for fixation, decalcification and embedding of trephines. Although any kind of bone marrow processing has its advantages and disadvantages, formalin fixation followed by EDTA decalcification can be considered a good compromise, which does not restrict the use of molecular techniques. Although the majority of molecular studies in haematological neoplasms are routinely performed on bone marrow aspirates or peripheral blood cells, there are certain indications, in which molecular studies such as clonality determination or detection of specific mutations need to be performed on the trephine biopsy. Especially, the determination of B- or T-cell clonality for the diagnosis of lymphoid malignancies requires stringent quality controls and knowledge of technical pitfalls. In this review, we discuss technical aspects of bone marrow biopsy processing and the application of diagnostic molecular techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Andrulis M, Penzel R, Weichert W et al (2012) Application of a BRAF V600E mutation-specific antibody for the diagnosis of hairy cell leukemia. Am J Surg Pathol; (Epub ahead of print) PMID: 22531170

  2. Baxter EJ, Scott LM, Campbell PJ et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:1054–1061

    PubMed  CAS  Google Scholar 

  3. Beck RC, Tubbs RR, Hussein M et al (2003) Automated colorimetric in situ hybridization (CISH) detection of immunoglobulin (Ig) light chain mRNA expression in plasma cell (PC) dyscrasias and non-Hodgkin lymphoma. Diagn Mol Pathol. Am J Surg Pathol Part B 12:14–20

    Article  CAS  Google Scholar 

  4. Bock O, Busche G, Koop C et al (2006) Detection of the single hotspot mutation in the JH2 pseudokinase domain of Janus kinase 2 in bone marrow trephine biopsies derived from chronic myeloproliferative disorders. J Mol Diagn 8:170–177

    Article  PubMed  CAS  Google Scholar 

  5. Bock O, Lehmann U, Kreipe H (2003) Quantitative intra-individual monitoring of BCR-ABL transcript levels in archival bone marrow trephines of patients with chronic myeloid leukemia. J Mol Diagn 5:54–60

    Article  PubMed  CAS  Google Scholar 

  6. Bonzheim I, Fröhlich F, Adam P et al (2012) A comparative analysis of protocols for detection of T cell clonality in formalin-fixed, paraffin-embedded tissue—implications for practical use. J Hematop 5:7–16

    Article  Google Scholar 

  7. Engels K, Oeschger S, Hansmann ML et al (2007) Bone marrow trephines containing lymphoid aggregates from patients with rheumatoid and other autoimmune disorders frequently show clonal B-cell infiltrates. Hum Pathol 38:1402–1411

    Article  PubMed  CAS  Google Scholar 

  8. Falini B, Mecucci C, Tiacci E et al (2005) Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352:254–266

    Article  PubMed  CAS  Google Scholar 

  9. Fend F, Bock O, Kremer M et al (2005) Ancillary techniques in bone marrow pathology: molecular diagnostics on bone marrow trephine biopsies. Virchows Arch 447:909–919

    Article  PubMed  CAS  Google Scholar 

  10. Fend F, Gschwendtner A, Gredler E et al (1994) Detection of monoclonal B-cell populations in decalcified, plastic-embedded bone marrow biopsies with the polymerase chain reaction. Am J Clin Pathol 102:850–855

    PubMed  CAS  Google Scholar 

  11. Fend F, Tzankov A, Bink K et al (2008) Modern techniques for the diagnostic evaluation of the trephine bone marrow biopsy: methodological aspects and applications. Prog Histochem Cytochem 42:203–252

    Article  PubMed  Google Scholar 

  12. Horn T, Kremer M, Dechow T et al (2006) Detection of the activating JAK2 V617F mutation in paraffin-embedded trephine bone marrow biopsies of patients with chronic myeloproliferative diseases. J Mol Diagn 8:299–304

    Article  PubMed  CAS  Google Scholar 

  13. James C, Ugo V, Le Couedic JP et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148

    Article  PubMed  CAS  Google Scholar 

  14. Kralovics R, Passamonti F, Buser AS (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352:1779–1790

    Article  PubMed  CAS  Google Scholar 

  15. Kremer M, Horn T, Koch I et al (2008) Quantitation of the JAK2V617F mutation in microdissected bone marrow trephines: equal mutational load in myeloid lineages and rare involvement of lymphoid cells. Am J Surg Pathol 32:928–935

    Article  PubMed  Google Scholar 

  16. Kremer M, Spitzer M, Mandl-Weber S et al (2003) Discordant bone marrow involvement in diffuse large B-cell lymphoma: comparative molecular analysis reveals a heterogeneous group of disorders. Lab Invest 83:107–114

    PubMed  CAS  Google Scholar 

  17. Krenacs T, Bagdi E, Stelkovics E et al (2005) How we process trephine biopsy specimens: epoxy resin embedded bone marrow biopsies. J Clin Pathol 58:897–903

    Article  PubMed  CAS  Google Scholar 

  18. Lassmann S, Gerlach UV, Technau-Ihling K et al (2005) Application of BIOMED-2 primers in fixed and decalcified bone marrow biopsies: analysis of immunoglobulin H receptor rearrangements in B-cell non-Hodgkin’s lymphomas. J Mol Diagn 7:582–591

    Article  PubMed  CAS  Google Scholar 

  19. Makishima H, Visconte V, Sakaguchi H et al (2012) Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood 119:3203–3210

    Article  PubMed  CAS  Google Scholar 

  20. Naresh KN, Lampert I, Hasserjian R et al (2006) Optimal processing of bone marrow trephine biopsy: the Hammersmith Protocol. J Clin Pathol 59:903–911

    Article  PubMed  CAS  Google Scholar 

  21. Peterson LA, Brunning RD (2001) Bone marrow specimen processing. In: Knowles DM (Hrsg) Lippincott Williams & Wilkins, Philadelphia, S 1391–1406

  22. Pittaluga S, Tierens A, Dodoo YL et al (1999) How reliable is histologic examination of bone marrow trephine biopsy specimens for the staging of non-Hodgkin lymphoma? A study of hairy cell leukemia and mantle cell lymphoma involvement of the bone marrow trephine specimen by histologic, immunohistochemical, and polymerase chain reaction techniques. Am J Clin Pathol 111:179–184

    PubMed  CAS  Google Scholar 

  23. Reineke T, Jenni B, Abdou MT et al (2006) Ultrasonic decalcification offers new perspectives for rapid FISH, DNA, and RT-PCR analysis in bone marrow trephines. Am J Surg Pathol 30:892–896

    Article  PubMed  Google Scholar 

  24. Schaefer HE (1995) Die histologische Bearbeitungstechnik von Beckenkammbiopsien auf der Basis von Entkalkung und Paraffineinbettung unter Berücksichtigung osteologischer und hämatologischer Fragestellungen. Pathologe 16:11–27

    Article  PubMed  CAS  Google Scholar 

  25. Schmidt B, Kremer M, Gotze K et al (2006) Bone marrow involvement in follicular lymphoma: comparison of histology and flow cytometry as staging procedures. Leuk Lymphoma 47:1857–1862

    Article  PubMed  Google Scholar 

  26. Sotlar K, Escribano L, Landt O et al (2003) One-step detection of c-kit point mutations using peptide nucleic acid-mediated polymerase chain reaction clamping and hybridization probes. Am J Pathol 162:737–746

    Article  PubMed  CAS  Google Scholar 

  27. Specht K, Haralambieva E, Bink K et al (2004) Different mechanisms of cyclin D1 overexpression in multiple myeloma revealed by fluorescence in situ hybridization and quantitative analysis of mRNA levels. Blood 104:1120–1126

    Article  PubMed  CAS  Google Scholar 

  28. Stuart-Smith SE, Hughes DA, Bain BJ (2005) Are routine iron stains on bone marrow trephine biopsy specimens necessary? J Clin Pathol 58:269–272

    Article  PubMed  CAS  Google Scholar 

  29. Thiele J, Kvasnicka HM, Facchetti F et al (2005) European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica 90:1128–1132

    PubMed  Google Scholar 

  30. Tiacci E, Trifonov V, Schiavoni G et al (2011) BRAF mutations in hairy-cell leukemia. N Engl J Med 364:2305–2315

    Article  PubMed  CAS  Google Scholar 

  31. Weber-Matthiesen K, Pressl S, Schlegelberger B, Grote W (1993) Combined immunophenotyping and interphase cytogenetics on cryostat sections by the new FICTION method. Leukemia 7:646–649

    PubMed  CAS  Google Scholar 

  32. Wilkins BS, Clark DM (2009) Making the most of bone marrow trephine biopsy. Histopathology 55:631–640

    Article  PubMed  Google Scholar 

  33. Yoshida K, Sanada M, Shiraishi Y et al (2011) Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478:64–69

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Quintanilla-Martinez .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quintanilla-Martinez , L., Tinguely, M., Bonzheim, I. et al. Knochenmarkbiopsie. Pathologe 33, 481–489 (2012). https://doi.org/10.1007/s00292-012-1647-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-012-1647-z

Schlüsselwörter

Keywords

Navigation