Skip to main content

Advertisement

Log in

Pathogenesis of implant-associated infection: the role of the host

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Implanted devices are mainly used to improve impaired function or to replace missing anatomic structures. They are made of synthetic material or devitalized biological structures. In contrast to vital transplants, they are not rejected by the body. However, the host reacts against these foreign bodies, a process which can be designated as biocompatibility. The interaction of the device with adjacent granulocytes and complement not only induces various degrees of inflammation but also impairs local microbial clearance. Foreign surfaces are a preferred target for bacterial adherence. While adhering bacteria are highly resistant to the bactericidal activity of phagocytes, they are also resistant to most antimicrobial agents. Certain bacteria may reside within host cells, and hence, evade host defense mechanisms by persisting intracellularly around implants. Nanotechnology minimizes clotting activation and bacterial adhesion by intravascular devices. Furthermore, surface coating with appropriate substances favorably influences biocompatibility as well as susceptibility to infection. In the future, “Microsystems Technology” deployed as intelligent device may decrease the risk of implant failure due to infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350:1422–1429

    Article  PubMed  CAS  Google Scholar 

  2. Coady MA, Ikonomidis JS, Cheung AT, Matsumoto AH, Dake MD, Chaikof EL, Cambria RP, Mora-Mangano CT, Sundt TM, Sellke FW (2010) Surgical management of descending thoracic aortic disease: open and endovascular approaches: a scientific statement from the American Heart Association. Circulation 121:2780–2804

    Article  PubMed  Google Scholar 

  3. Peng HT (2010) Thromboelastographic study of biomaterials. J Biomed Mater Res B Appl Biomater 94:469–485

    PubMed  Google Scholar 

  4. Williams DF (2009) On the nature of biomaterials. Biomaterials 30:5897–5909

    Article  PubMed  CAS  Google Scholar 

  5. Lendlein A, Behl M, Hiebl B, Wischke C (2010) Shape-memory polymers as a technology platform for biomedical applications. Expert Rev Med Devices 7:357–379

    Article  PubMed  CAS  Google Scholar 

  6. Anderson JM (2011) Biocompatibility of implants: lymphocyte/macrophage interactions. Semin Immunopathol (this issue)

  7. Baier RE (2006) Surface behaviour of biomaterials: the theta surface for biocompatibility. J Mater Sci Mater Med 17:1057–1062

    Article  PubMed  CAS  Google Scholar 

  8. Steckelberg J, Osmon D In: Waldvogel FA, Bisno AL, eds. Infections associated with indwelling medical devices. 3rd ed. Washington, D.C.: American Society for Microbiology, 2000: 173–209

  9. Zimmerli W, Trampuz A, Ochsner PE (2004) Prosthetic-joint infections. N Engl J Med 351:1645–1654

    Article  PubMed  CAS  Google Scholar 

  10. Del Pozo JL, Patel R (2009) Clinical practice. Infection associated with prosthetic joints. N Engl J Med 361:787–794

    Article  PubMed  Google Scholar 

  11. Tleyjeh IM, Kashour T, Zimmerman V, Steckelberg JM, Wilson WR, Baddour LM (2008) The role of valve surgery in infective endocarditis management: a systematic review of observational studies that included propensity score analysis. Am Heart J 156:901–909

    Article  PubMed  Google Scholar 

  12. Herscu G, Wilson SE (2009) Prosthetic infection: lessons from treatment of the infected vascular graft. Surg Clin North Am 89:391–401

    Article  PubMed  Google Scholar 

  13. Rieger UM, Pierer G, Luscher NJ, Trampuz A (2009) Sonication of removed breast implants for improved detection of subclinical infection. Aesthet Plast Surg 33:404–408

    Article  CAS  Google Scholar 

  14. Sanchez-Manuel FJ, Seco-Gil JL (2004) Antibiotic prophylaxis for hernia repair. Cochrane Database Syst Rev: CD003769

  15. Gutierrez-Gonzalez R, Boto GR (2010) Do antibiotic-impregnated catheters prevent infection in CSF diversion procedures? Review of the literature. J Infect 61:9–20

    Article  PubMed  Google Scholar 

  16. Braxton EE Jr, Ehrlich GD, Hall-Stoodley L, Stoodley P, Veeh R, Fux C, Hu FZ, Quigley M, Post JC (2005) Role of biofilms in neurosurgical device-related infections. Neurosurg Rev 28:249–255

    Article  PubMed  Google Scholar 

  17. Elek SD, Conen PE (1957) The virulence of Staphylococcus pyogenes for man; a study of the problems of wound infection. Br J Exp Pathol 38:573–586

    PubMed  CAS  Google Scholar 

  18. Zimmerli W, Waldvogel FA, Vaudaux P, Nydegger UE (1982) Pathogenesis of foreign body infection: description and characteristics of an animal model. J Infect Dis 146:487–497

    Article  PubMed  CAS  Google Scholar 

  19. Widmer AF, Frei R, Rajacic Z, Zimmerli W (1990) Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J Infect Dis 162:96–102

    Article  PubMed  CAS  Google Scholar 

  20. Zimmerli W, Zak O, Vosbeck K (1985) Experimental hematogenous infection of subcutaneously implanted foreign bodies. Scand J Infect Dis 17:303–310

    PubMed  CAS  Google Scholar 

  21. Murdoch DR, Roberts SA, Fowler VG Jr, Shah MA Jr, Taylor SL, Morris AJ, Corey GR (2001) Infection of orthopedic prostheses after Staphylococcus aureus bacteremia. Clin Infect Dis 32:647–649

    Article  PubMed  CAS  Google Scholar 

  22. Lalani T, Chu VH, Grussemeyer CA, Reed SD, Bolognesi MP, Friedman JY, Griffiths RI, Crosslin DR, Kanafani ZA, Kaye KS, Ralph Corey G, Fowler VG Jr (2008) Clinical outcomes and costs among patients with Staphylococcus aureus bacteremia and orthopedic device infections. Scand J Infect Dis 40:973–977

    Article  PubMed  Google Scholar 

  23. Sendi P, Banderet F, Graber P, Zimmerli W (2011) Periprosthetic joint infection following Staphylococcus aureus bacteremia. J Infect (in press)

  24. Zimmerli W, Lew PD, Waldvogel FA (1984) Pathogenesis of foreign body infection. Evidence for a local granulocyte defect. J Clin Invest 73:1191–1200

    Article  PubMed  CAS  Google Scholar 

  25. Vaudaux P, Francois P, Lew D, Waldvogel FA (2000) Host factors predisposing to and influencing therapy of foreign body infections. In: Waldvogel FA, Bisno AL (eds) Infections Associated with Indwelling Medical Devices, 3rd edn. ASM, Washington

    Google Scholar 

  26. Forster TJ, Höök M (2000) Molecular basis of adherence of Staphylococcus aureus to Biomaterials. In: Waldvogel FA, Bisno AL (eds) Infections Associated with Indwelling Medical Devices, 3rd edn. ASM, Washington

    Google Scholar 

  27. Proctor RA (2000) Microbial pathogenic factors: small-colony variants. In: Waldvogel FA, Bisno AL (eds) Infections Associated with Indwelling Medical Devices, 3rd edn. ASM, Washington

    Google Scholar 

  28. Götz F, Peters G (2000) Colonization of medical devices by coagulase-negative Staphylococci. In: Waldvogel FA, Bisno AL (eds) Infections Associated with Indwelling Medical Devices, 3rd edn. ASM, Washington

    Google Scholar 

  29. Anderson JM, Marchant RE (2000) Biomaterials: Factors favoring colonization and infection. In: Waldvogel FA, Bisno AL (eds) Infections Associated with Indwelling Medical Devices, 3rd edn. ASM, Washington

    Google Scholar 

  30. Ha KY, Chung YG, Ryoo SJ (2005) Adherence and biofilm formation of Staphylococcus epidermidis and Mycobacterium tuberculosis on various spinal implants. Spine (Phila Pa 1976) 30: 38–43

    Google Scholar 

  31. Hudetz D, Ursic Hudetz S, Harris LG, Luginbuhl R, Friederich NF, Landmann R (2008) Weak effect of metal type and ica genes on staphylococcal infection of titanium and stainless steel implants. Clin Microbiol Infect 14:1135–1145

    Article  PubMed  CAS  Google Scholar 

  32. Zimmerli W, Trampuz A (2011) Implant-associated infection. In: Bjarnsholt T, Hoiby N, Moser C, Jensen PO (eds) Biofilms, 1st edn. Springer, Heidelberg

    Google Scholar 

  33. Lai BF, Creagh AL, Janzen J, Haynes CA, Brooks DE, Kizhakkedathu JN (2010) The induction of thrombus generation on nanostructured neutral polymer brush surfaces. Biomaterials 31:6710–6718

    Article  CAS  Google Scholar 

  34. Coleman DL, King RN, Andrade JD (1974) The foreign body reaction: a chronic inflammatory response. J Biomed Mater Res 8:199–211

    Article  PubMed  CAS  Google Scholar 

  35. Takagi H, Goto SN, Matsui M, Manabe H, Umemoto T (2010) A contemporary meta-analysis of Dacron versus polytetrafluoroethylene grafts for femoropopliteal bypass grafting. J Vasc Surg 52:232–236

    Article  PubMed  Google Scholar 

  36. Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM (2005) Current status of prosthetic bypass grafts: a review. J Biomed Mater Res B Appl Biomater 74:570–581

    PubMed  Google Scholar 

  37. Amarenco P, Labreuche J, Mazighi M (2010) Lessons from carotid endarterectomy and stenting trials. Lancet 376:1028–1031

    Article  PubMed  Google Scholar 

  38. Barnard J, Humphreys J, Bittar MN (2009) Endovascular versus open surgical repair for blunt thoracic aortic injury. Interact Cardiovasc Thorac Surg 9:506–509

    Article  PubMed  Google Scholar 

  39. Kidane AG, Burriesci G, Cornejo P, Dooley A, Sarkar S, Bonhoeffer P, Edirisinghe M, Seifalian AM (2009) Current developments and future prospects for heart valve replacement therapy. J Biomed Mater Res B Appl Biomater 88:290–303

    PubMed  Google Scholar 

  40. Hammermeister K, Sethi GK, Henderson WG, Grover FL, Oprian C, Rahimtoola SH (2000) Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial. J Am Coll Cardiol 36:1152–1158

    Article  PubMed  CAS  Google Scholar 

  41. Oxenham H, Bloomfield P, Wheatley DJ, Lee RJ, Cunningham J, Prescott RJ, Miller HC (2003) Twenty year comparison of a Bjork-Shiley mechanical heart valve with porcine bioprostheses. Heart 89:715–721

    Article  PubMed  CAS  Google Scholar 

  42. Kurtz SM, Ong KL, Lau E, Bozic KJ, Berry D, Parvizi J (2010) Prosthetic joint infection risk after TKA in the Medicare population. Clin Orthop Relat Res 468:52–56

    Article  PubMed  Google Scholar 

  43. Lethaby A, Temple J, Santy J (2008) Pin site care for preventing infections associated with external bone fixators and pins. Cochrane Database Syst Rev: CD004551

  44. Harvey EJ, Henderson JE, Vengallatore ST (2010) Nanotechnology and bone healing. J Orthop Trauma 24(Suppl 1):S25–S30

    Article  PubMed  Google Scholar 

  45. Leekha S, Sampathkumar P, Berry DJ, Thompson RL (2010) Should national standards for reporting surgical site infections distinguish between primary and revision orthopedic surgeries? Infect Control Hosp Epidemiol 31:503–508

    Article  PubMed  Google Scholar 

  46. Achermann Y, Vogt M, Spormann C, Kolling C, Remschmidt C, Wust J, Simmen B, Trampuz A (2010) Characteristics and outcome of 27 elbow periprosthetic joint infection: Results from a 14-year cohort study of 358 elbow prostheses. [Epub ahead of print]. Clin Microbiol Infect

  47. Finlay BB, Cossart P (1997) Exploitation of mammalian host cell functions by bacterial pathogens. Science 276:718–725

    Article  PubMed  CAS  Google Scholar 

  48. Trampuz A, Zimmerli W (2008) Diagnosis and treatment of implant-associated septic arthritis and osteomyelitis. Curr Infect Dis Rep 10:394–403

    Article  PubMed  Google Scholar 

  49. Sendi P, Frei R, Maurer TB, Trampuz A, Zimmerli W, Graber P (2010) Escherichia coli variants in periprosthetic joint infection: diagnostic challenges with sessile bacteria and sonication. J Clin Microbiol 48:1720–1725

    Article  PubMed  Google Scholar 

  50. Verhoef J (1991) The phagocytic process and the role of complement in host defense. J Chemother 3(Suppl 1):93–97

    PubMed  Google Scholar 

  51. Zimmerli W, Zarth A, Gratwohl A, Speck B (1991) Neutrophil function and pyogenic infections in bone marrow transplant recipients. Blood 77:393–399

    PubMed  CAS  Google Scholar 

  52. Herrmann M, Vaudaux PE, Pittet D, Auckenthaler R, Lew PD, Schumacher-Perdreau F, Peters G, Waldvogel FA (1988) Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis 158:693–701

    Article  PubMed  CAS  Google Scholar 

  53. Vaudaux P, Pittet D, Haeberli A, Lerch PG, Morgenthaler JJ, Proctor RA, Waldvogel FA, Lew DP (1993) Fibronectin is more active than fibrin or fibrinogen in promoting Staphylococcus aureus adherence to inserted intravascular catheters. J Infect Dis 167:633–641

    Article  PubMed  CAS  Google Scholar 

  54. Lopes JD, dos Reis M, Brentani RR (1985) Presence of laminin receptors in Staphylococcus aureus. Science 229:275–277

    Article  PubMed  CAS  Google Scholar 

  55. Zimmerli W (1999) Tissue cage infection model; Chapter 47 In: Handbook of animal models of infection ISBN 0-12-775390-7:409–417

  56. Kristian SA, Golda T, Ferracin F, Cramton SE, Neumeister B, Peschel A, Gotz F, Landmann R (2004) The ability of biofilm formation does not influence virulence of Staphylococcus aureus and host response in a mouse tissue cage infection model. Microb Pathog 36:237–245

    Article  PubMed  CAS  Google Scholar 

  57. Kristian SA, Birkenstock TA, Sauder U, Mack D, Gotz F, Landmann R (2008) Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. J Infect Dis 197:1028–1035

    Article  PubMed  Google Scholar 

  58. Bernard L, Vaudaux P, Merle C, Stern R, Huggler E, Lew D, Hoffmeyer P (2005) The inhibition of neutrophil antibacterial activity by ultra-high molecular weight polyethylene particles. Biomaterials 26:5552–5557

    Article  PubMed  CAS  Google Scholar 

  59. Klock JC, Stossel TP (1977) Detection, pathogenesis, and prevention of damage to human granulocytes caused by interaction with nylon wool fiber. Implications for filtration leukapheresis. J Clin Invest 60:1183–1190

    Article  PubMed  CAS  Google Scholar 

  60. Wright DG, Gallin JI (1979) Secretory responses of human neutrophils: exocytosis of specific (secondary) granules by human neutrophils during adherence in vitro and during exudation in vivo. J Immunol 123:285–294

    PubMed  CAS  Google Scholar 

  61. Kaplan SS, Heine RP, Simmons RL (1999) Defensins impair phagocytic killing by neutrophils in biomaterial-related infection. Infect Immun 67:1640–1645

    PubMed  CAS  Google Scholar 

  62. Chang S, Popowich Y, Greco RS, Haimovich B (2003) Neutrophil survival on biomaterials is determined by surface topography. J Vasc Surg 37:1082–1090

    Article  PubMed  Google Scholar 

  63. Leid JG, Shirtliff ME, Costerton JW, Stoodley P (2002) Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 70:6339–6345

    Article  PubMed  CAS  Google Scholar 

  64. Olofsson P, Rabahie GN, Matsumoto K, Ehrenfeld WK, Ferrell LD, Goldstone J, Reilly LM, Stoney RJ (1995) Histopathological characteristics of explanted human prosthetic arterial grafts: implications for the prevention and management of graft infection. Eur J Vasc Endovasc Surg 9:143–151

    Article  PubMed  CAS  Google Scholar 

  65. Bohler J, Kramer P, Gotze O, Schwartz P, Scheler F (1983) Leucocyte counts and complement activation during pump-driven and arteriovenous haemofiltration. Contrib Nephrol 36:15–25

    PubMed  CAS  Google Scholar 

  66. Burhop KE, Johnson RJ, Simpson J, Chenoweth DE, Borgia J (1993) Biocompatibility of hemodialysis membranes: evaluation in an ovine model. J Lab Clin Med 121:276–293

    PubMed  CAS  Google Scholar 

  67. Hammerschmidt DE, Craddock PR, McCullough F, Kronenberg RS, Dalmasso AP, Jacob HS (1978) Complement activation and pulmonary leukotasis during nylon fiber filtration leukapheresis. Blood 51:721–730

    PubMed  CAS  Google Scholar 

  68. Moczar M, Lecerf L, Ginat M, Loisance D (1996) Complement activation is involved in the structural deterioration of bovine pericardial bioprosthetic heart valves. ASAIO J 42:M375–M381

    Article  PubMed  CAS  Google Scholar 

  69. Shepard AD, Gelfand JA, Callow AD, O’Donnell TF Jr (1984) Complement activation by synthetic vascular prostheses. J Vasc Surg 1:829–838

    Article  PubMed  CAS  Google Scholar 

  70. Anderson JM (1988) Inflammatory response to implants. ASAIO Trans 34:101–107

    Article  PubMed  CAS  Google Scholar 

  71. Tang L, Liu L, Elwing HB (1998) Complement activation and inflammation triggered by model biomaterial surfaces. J Biomed Mater Res 41:333–340

    Article  PubMed  CAS  Google Scholar 

  72. Bauer TW, Schils J (1999) The pathology of total joint arthroplasty. II. Mechanisms of implant failure. Skeletal Radiol 28:483–497

    Article  PubMed  CAS  Google Scholar 

  73. DeHeer DH, Engels JA, DeVries AS, Knapp RH, Beebe JD (2001) In situ complement activation by polyethylene wear debris. J Biomed Mater Res 54:12–19

    Article  PubMed  CAS  Google Scholar 

  74. Hugli TE, Muller-Eberhard HJ (1978) Anaphylatoxins: C3a and C5a. Adv Immunol 26:1–53

    Article  PubMed  CAS  Google Scholar 

  75. Nelson CL, McLaren AC, McLaren SG, Johnson JW, Smeltzer MS (2005) Is aseptic loosening truly aseptic? Clin Orthop Relat Res: 25–30

  76. Moojen DJ, van Hellemondt G, Vogely HC, Burger BJ, Walenkamp GH, Tulp NJ, Schreurs BW, de Meulemeester FR, Schot CS, van de Pol I, Fujishiro T, Schouls LM, Bauer TW, Dhert WJ (2010) Incidence of low-grade infection in aseptic loosening of total hip arthroplasty. [Epub ahead of print] Acta Orthop

  77. Teronen O, Konttinen YT, Lindqvist C, Salo T, Ingman T, Lauhio A, Ding Y, Santavirta S, Sorsa T (1997) Human neutrophil collagenase MMP-8 in peri-implant sulcus fluid and its inhibition by clodronate. J Dent Res 76:1529–1537

    Article  PubMed  CAS  Google Scholar 

  78. Velard F, Laurent-Maquin D, Guillaume C, Bouthors S, Jallot E, Nedelec JM, Belaaouaj A, Laquerriere P (2009) Polymorphonuclear neutrophil response to hydroxyapatite particles, implication in acute inflammatory reaction. Acta Biomater 5:1708–1715

    Article  PubMed  CAS  Google Scholar 

  79. Bernard L, Vaudaux P, Huggler E, Stern R, Frehel C, Francois P, Lew D, Hoffmeyer P (2007) Inactivation of a subpopulation of human neutrophils by exposure to ultrahigh-molecular-weight polyethylene wear debris. FEMS Immunol Med Microbiol 49:425–432

    Article  PubMed  CAS  Google Scholar 

  80. Tuan RS, Lee FY, Konttinen YT, Wilkinson JM, Smith RL (2008) What are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles? J Am Acad Orthop Surg 16(1):S42–S48

    PubMed  Google Scholar 

  81. Revell PA (2008) The combined role of wear particles, macrophages and lymphocytes in the loosening of total joint prostheses. J R Soc Interface 5:1263–1278

    Article  PubMed  CAS  Google Scholar 

  82. Malone JM, Moore WS, Campagna G, Bean B (1975) Bacteremic infectability of vascular grafts: the influence of pseudointimal integrity and duration of graft function. Surgery 78:211–216

    PubMed  CAS  Google Scholar 

  83. Moore WS, Malone JM, Keown K (1980) Prosthetic arterial graft material. Influence on neointimal healing and bacteremic infectibility. Arch Surg 115:1379–1383

    PubMed  CAS  Google Scholar 

  84. Foth R, Quentin T, Michel-Behnke I, Vogt M, Kriebel T, Kreischer A, Ruschewski W, Paul T, Sigler M (2009) Immunohistochemical characterization of neotissues and tissue reactions to septal defect-occlusion devices. Circ Cardiovasc Interv 2:90–96

    Article  PubMed  Google Scholar 

  85. Costerton JW, Geesey GG, Cheng KJ (1978) How bacteria stick. Sci Am 238:86–95

    Article  PubMed  CAS  Google Scholar 

  86. Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7:277–281

    Article  PubMed  CAS  Google Scholar 

  87. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    PubMed  Google Scholar 

  88. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  PubMed  CAS  Google Scholar 

  89. Baldoni D, Haschke M, Rajacic Z, Zimmerli W, Trampuz A (2009) Linezolid alone or combined with rifampin against methicillin-resistant Staphylococcus aureus in experimental foreign-body infection. Antimicrob Agents Chemother 53:1142–1148

    Article  PubMed  CAS  Google Scholar 

  90. John AK, Baldoni D, Haschke M, Rentsch K, Schaerli P, Zimmerli W, Trampuz A (2009) Efficacy of daptomycin in implant-associated infection due to methicillin-resistant Staphylococcus aureus: importance of combination with rifampin. Antimicrob Agents Chemother 53:2719–2724

    Article  PubMed  CAS  Google Scholar 

  91. Widmer AF, Wiestner A, Frei R, Zimmerli W (1991) Killing of nongrowing and adherent Escherichia coli determines drug efficacy in device-related infections. Antimicrob Agents Chemother 35:741–746

    PubMed  CAS  Google Scholar 

  92. Zimmerli W, Frei R, Widmer AF, Rajacic Z (1994) Microbiological tests to predict treatment outcome in experimental device-related infections due to Staphylococcus aureus. J Antimicrob Chemother 33:959–967

    Article  PubMed  CAS  Google Scholar 

  93. Vaudaux PE, Zulian G, Huggler E, Waldvogel FA (1985) Attachment of Staphylococcus aureus to polymethylmethacrylate increases its resistance to phagocytosis in foreign body infection. Infect Immun 50:472–477

    PubMed  CAS  Google Scholar 

  94. von Eiff C, Peters G, Heilmann C (2002) Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2:677–685

    Article  Google Scholar 

  95. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295–305

    Article  PubMed  CAS  Google Scholar 

  96. Million M, Thuny F, Richet H, Raoult D (2010) Long-term outcome of Q fever endocarditis: a 26-year personal survey. Lancet Infect Dis 10:527–535

    Article  PubMed  Google Scholar 

  97. Fournier PE, Casalta JP, Piquet P, Tournigand P, Branchereau A, Raoult D (1998) Coxiella burnetii infection of aneurysms or vascular grafts: report of seven cases and review. Clin Infect Dis 26:116–121

    Article  PubMed  CAS  Google Scholar 

  98. Senn L, Franciolli M, Raoult D, Moulin A, Von Segesser L, Calandra T, Greub G (2005) Coxiella burnetii vascular graft infection. BMC Infect Dis 5:109

    Article  PubMed  Google Scholar 

  99. Raoult D, Marrie T, Mege J (2005) Natural history and pathophysiology of Q fever. Lancet Infect Dis 5:219–226

    Article  PubMed  CAS  Google Scholar 

  100. Capo C, Moynault A, Collette Y, Olive D, Brown EJ, Raoult D, Mege JL (2003) Coxiella burnetii avoids macrophage phagocytosis by interfering with spatial distribution of complement receptor 3. J Immunol 170:4217–4225

    PubMed  CAS  Google Scholar 

  101. Capo C, Lindberg FP, Meconi S, Zaffran Y, Tardei G, Brown EJ, Raoult D, Mege JL (1999) Subversion of monocyte functions by coxiella burnetii: impairment of the cross-talk between alphavbeta3 integrin and CR3. J Immunol 163:6078–6085

    PubMed  CAS  Google Scholar 

  102. Ghigo E, Capo C, Tung CH, Raoult D, Gorvel JP, Mege JL (2002) Coxiella burnetii survival in THP-1 monocytes involves the impairment of phagosome maturation: IFN-gamma mediates its restoration and bacterial killing. J Immunol 169:4488–4495

    PubMed  CAS  Google Scholar 

  103. Higgins DM, Basaraba RJ, Hohnbaum AC, Lee EJ, Grainger DW, Gonzalez-Juarrero M (2009) Localized immunosuppressive environment in the foreign body response to implanted biomaterials. Am J Pathol 175:161–170

    Article  PubMed  CAS  Google Scholar 

  104. Mege JL, Meghari S, Honstettre A, Capo C, Raoult D (2006) The two faces of interleukin 10 in human infectious diseases. Lancet Infect Dis 6:557–569

    Article  PubMed  CAS  Google Scholar 

  105. Widmer AF, Colombo VE, Gachter A, Thiel G, Zimmerli W (1990) Salmonella infection in total hip replacement: tests to predict the outcome of antimicrobial therapy. Scand J Infect Dis 22:611–618

    Article  PubMed  CAS  Google Scholar 

  106. Berbari EF, Hanssen AD, Duffy MC, Steckelberg JM, Osmon DR (1998) Prosthetic joint infection due to Mycobacterium tuberculosis: a case series and review of the literature. Am J Orthop Belle Mead NJ 27:219–227

    PubMed  CAS  Google Scholar 

  107. Eid AJ, Berbari EF, Sia IG, Wengenack NL, Osmon DR, Razonable RR (2007) Prosthetic joint infection due to rapidly growing mycobacteria: report of 8 cases and review of the literature. Clin Infect Dis 45:687–694

    Article  PubMed  Google Scholar 

  108. Ellis LC, Segreti J, Gitelis S, Huber JF (1995) Joint infections due to Listeria monocytogenes: case report and review. Clin Infect Dis 20:1548–1550

    Article  PubMed  CAS  Google Scholar 

  109. Van Noyen R, Reybrouck R, Peeters P, Verheyen L, Vandepitte J (1993) Listeria monocytogenes infection of a prosthetic vascular graft. Infection 21:125–126

    Article  PubMed  Google Scholar 

  110. Ward AS, Russell AJ (1991) Salmonella vascular graft infection. Lancet 337:735

    Article  PubMed  CAS  Google Scholar 

  111. Wright RA, Yang F, Moore WS (1977) Tuberculous infection in a vascular prosthesis: a case of aortic graft infection resulting from disseminated tuberculosis. Arch Surg 112:79–81

    PubMed  CAS  Google Scholar 

  112. Clerc O, Jaton K, Prod’hom G, Von Segesser L, Greloz V, Greub G (2008) Mycobacterium tuberculosis aortic graft infection with recurrent hemoptysis: a case report. J Med Case Rep 2:233

    Article  Google Scholar 

  113. Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M, Amara A, Legres L, Dreher D, Nicod LP, Gluckman JC, Lagrange PH, Gicquel B, Neyrolles O (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197:121–127

    Article  PubMed  CAS  Google Scholar 

  114. Chen WH, Jiang LS, Dai LY Influence of Bacteria on Spinal Implant-Centered Infection: An in vitro and in vivo experimental comparison between Staphylococcus aureus and Mycobacterium tuberculosis. Spine (Phila Pa 1976)

  115. Ray K, Marteyn B, Sansonetti PJ, Tang CM (2009) Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol 7:333–340

    Article  PubMed  CAS  Google Scholar 

  116. Borucki MK, Peppin JD, White D, Loge F, Call DR (2003) Variation in biofilm formation among strains of Listeria monocytogenes. Appl Environ Microbiol 69:7336–7342

    Article  PubMed  CAS  Google Scholar 

  117. Prouty AM, Schwesinger WH, Gunn JS (2002) Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun 70:2640–2649

    Article  PubMed  CAS  Google Scholar 

  118. Sendi P, Proctor RA (2009) Staphylococcus aureus as an intracellular pathogen: the role of small colony variants. Trends Microbiol 17:54–58

    Article  PubMed  CAS  Google Scholar 

  119. Spanu T, Romano L, D’Inzeo T, Masucci L, Albanese A, Papacci F, Marchese E, Sanguinetti M, Fadda G (2005) Recurrent ventriculoperitoneal shunt infection caused by small-colony variants of Staphylococcus aureus. Clin Infect Dis 41:e48–e52

    Article  PubMed  Google Scholar 

  120. Sendi P, Rohrbach M, Graber P, Frei R, Ochsner PE, Zimmerli W (2006) Staphylococcus aureus small colony variants in prosthetic joint infection. Clin Infect Dis 43:961–967

    Article  PubMed  Google Scholar 

  121. von Eiff C, Becker K, Metze D, Lubritz G, Hockmann J, Schwarz T, Peters G (2001) Intracellular persistence of Staphylococcus aureus small-colony variants within keratinocytes: a cause for antibiotic treatment failure in a patient with Darier’s disease. Clin Infect Dis 32:1643–1647

    Article  Google Scholar 

  122. Proctor RA, van Langevelde P, Kristjansson M, Maslow JN, Arbeit RD (1995) Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus. Clin Infect Dis 20:95–102

    Article  PubMed  CAS  Google Scholar 

  123. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953

    Article  PubMed  CAS  Google Scholar 

  124. Smith LJ, Swaim JS, Yao C, Haberstroh KM, Nauman EA, Webster TJ (2007) Increased osteoblast cell density on nanostructured PLGA-coated nanostructured titanium for orthopedic applications. Int J Nanomedicine 2:493–499

    PubMed  CAS  Google Scholar 

  125. Montanaro L, Campoccia D, Arciola CR (2008) Nanostructured materials for inhibition of bacterial adhesion in orthopedic implants: a minireview. Int J Artif Organs 31:771–776

    PubMed  CAS  Google Scholar 

  126. Ferraz N, Nilsson B, Hong J, Karlsson Ott M (2008) Nanoporesize affects complement activation. J Biomed Mater Res A 87:575–581

    PubMed  Google Scholar 

  127. Groll J, Fiedler J, Bruellhoff K, Moeller M, Brenner RE (2009) Novel surface coatings modulating eukaryotic cell adhesion and preventing implant infection. Int J Artif Organs 32:655–662

    PubMed  CAS  Google Scholar 

  128. Ochsner PE (2011) Osteointegration of orthopaedic devices. Semin Immunopathol (this issue)

  129. Raimondo T, Puckett S, Webster TJ (2010) Greater osteoblast and endothelial cell adhesion on nanostructured polyethylene and titanium. Int J Nanomedicine 5:647–652

    PubMed  CAS  Google Scholar 

  130. Yim EK, Leong KW (2005) Significance of synthetic nanostructures in dictating cellular response. Nanomedicine 1:10–21

    PubMed  CAS  Google Scholar 

  131. Webster TJ, Siegel RW, Bizios R (1999) Osteoblast adhesion on nanophase ceramics. Biomaterials 20:1221–1227

    Article  PubMed  CAS  Google Scholar 

  132. Shi Z, Neoh KG, Kang ET, Wang W (2006) Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials 27:2440–2449

    Article  PubMed  CAS  Google Scholar 

  133. Dalby MJ, Marshall GE, Johnstone HJ, Affrossman S, Riehle MO (2002) Interactions of human blood and tissue cell types with 95-nm-high nanotopography. IEEE Trans Nanobioscience 1:18–23

    Article  PubMed  Google Scholar 

  134. Dalby MJ, Riehle MO, Johnstone H, Affrossman S, Curtis AS (2002) In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials 23:2945–2954

    Article  PubMed  CAS  Google Scholar 

  135. Villa A, Arnold R, Sanchez PL, Gimeno F, Ramos B, Cantero T, Fernandez ME, Sanz R, Gutierrez O, Mota P, Garcia-Frade J, San Roman JA, Fernandez-Aviles F (2009) Comparison of neointimal hyperplasia with drug-eluting stents versus bare metal stents in patients undergoing intracoronary bone-marrow mononuclear cell transplantation following acute myocardial infarction. Am J Cardiol 103:1651–1656

    Article  PubMed  CAS  Google Scholar 

  136. Jensen LO, Maeng M, Kaltoft A, Thayssen P, Hansen HH, Bottcher M, Lassen JF, Krussel LR, Rasmussen K, Hansen KN, Pedersen L, Johnsen SP, Soerensen HT, Thuesen L (2007) Stent thrombosis, myocardial infarction, and death after drug-eluting and bare-metal stent coronary interventions. J Am Coll Cardiol 50:463–470

    Article  PubMed  CAS  Google Scholar 

  137. Stettler C, Wandel S, Allemann S, Kastrati A, Morice MC, Schomig A, Pfisterer ME, Stone GW, Leon MB, de Lezo JS, Goy JJ, Park SJ, Sabate M, Suttorp MJ, Kelbaek H, Spaulding C, Menichelli M, Vermeersch P, Dirksen MT, Cervinka P, Petronio AS, Nordmann AJ, Diem P, Meier B, Zwahlen M, Reichenbach S, Trelle S, Windecker S, Juni P (2007) Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet 370:937–948

    Article  PubMed  CAS  Google Scholar 

  138. Morice MC, Serruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, Colombo A, Schuler G, Barragan P, Guagliumi G, Molnar F, Falotico R (2002) A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 346:1773–1780

    Article  PubMed  CAS  Google Scholar 

  139. Moses JW, Leon MB, Popma JJ, Fitzgerald PJ, Holmes DR, O’Shaughnessy C, Caputo RP, Kereiakes DJ, Williams DO, Teirstein PS, Jaeger JL, Kuntz RE (2003) Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 349:1315–1323

    Article  PubMed  CAS  Google Scholar 

  140. Stone GW, Ellis SG, Cox DA, Hermiller J, O’Shaughnessy C, Mann JT, Turco M, Caputo R, Bergin P, Greenberg J, Popma JJ, Russell ME (2004) A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med 350:221–231

    Article  PubMed  CAS  Google Scholar 

  141. Stone GW, Ellis SG, Cannon L, Mann JT, Greenberg JD, Spriggs D, O’Shaughnessy CD, DeMaio S, Hall P, Popma JJ, Koglin J, Russell ME (2005) Comparison of a polymer-based paclitaxel-eluting stent with a bare metal stent in patients with complex coronary artery disease: a randomized controlled trial. JAMA 294:1215–1223

    Article  PubMed  CAS  Google Scholar 

  142. Antonios VS, Baddour LM (2004) Intra-arterial device infections. Curr Infect Dis Rep 6:263–269

    Article  PubMed  Google Scholar 

  143. Chambers CE (2009) Intracoronary stent infection. Beware the bugs. Catheter Cardiovasc Interv 73:77

    Article  PubMed  Google Scholar 

  144. Schoenkerman AB, Lundstrom RJ (2009) Coronary stent infections: a case series. Catheter Cardiovasc Interv 73:74–76

    Article  PubMed  Google Scholar 

  145. Groll J, Fiedler J, Engelhard E, Ameringer T, Tugulu S, Klok HA, Brenner RE, Moeller M (2005) A novel star PEG-derived surface coating for specific cell adhesion. J Biomed Mater Res A 74:607–617

    PubMed  Google Scholar 

  146. Gottenbos B, Grijpma DW, van der Mei HC, Feijen J, Busscher HJ (2001) Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 48:7–13

    Article  PubMed  CAS  Google Scholar 

  147. Li B, Jiang B, Boyce BM, Lindsey BA (2009) Multilayer polypeptide nanoscale coatings incorporating IL-12 for the prevention of biomedical device-associated infections. Biomaterials 30:2552–2558

    Article  PubMed  CAS  Google Scholar 

  148. Ehrlich GD, Hu FZ, Costerton QLJW, Post JC (2004) Intelligent implants to battle biofilms. ASM News 70:127–133

    Google Scholar 

  149. Coelho LR, Souza RR, Ferreira FA, Guimaraes MA, Ferreira-Carvalho BT, Figueiredo AM (2008) agr RNAIII divergently regulates glucose-induced biofilm formation in clinical isolates of Staphylococcus aureus. Microbiology 154:3480–3490

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Zimmerli.

Additional information

This manuscript is considered as part of the Special Issue on “Implanted Devices: Biocompatibility, Tissue Engineering and Infection.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmerli, W., Sendi, P. Pathogenesis of implant-associated infection: the role of the host. Semin Immunopathol 33, 295–306 (2011). https://doi.org/10.1007/s00281-011-0275-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-011-0275-7

Keywords

Navigation