Skip to main content

Advertisement

Log in

BRCA-1 methylation and TP53 mutation in triple-negative breast cancer patients without pathological complete response to taxane-based neoadjuvant chemotherapy

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Introduction

Triple-negative breast cancer (TNBC) patients without pathological complete response (pCR) to neoadjuvant chemotherapy have an unfavourable prognosis. TNBC harbouring BRCA-1 germline mutations may be less responsive to taxanes, while sensitivity to DNA-damaging agents is retained. A similar effect was seen in tumours with epigenetic BRCA-1 silencing. Patients without pCR to neoadjuvant chemotherapy consisting of epirubicin plus docetaxel routinely received post-operative CMF at our centre. Here, we investigated the effect of adjuvant CMF in patients with or without BRCA-1 methylation or TP53 mutation.

Methods

DNA was extracted from formalin-fixed paraffin-embedded tissue. For determining BRCA-1 methylation status, quantitative methylation-specific PCR was performed. For the investigation of TP53 mutation status, DNA was PCR amplified and sequenced by Sanger sequencing.

Results

Twenty-four patients were included; BRCA-1 methylation was present in 41.7 %, while TP53 mutations were observed in 66.7 %. At a median follow-up of 27.5 months, 20 % of patients with BRCA-1 methylation had a disease-free survival (DFS) event, as compared to 64.3 % in the non-methylated group (p = 0.0472). Median DFS in the non-methylated group was 16 months and was not reached in the methylated group (n.s.). No association TP53 mutation status with clinical outcome was observed.

Conclusions

Adjuvant CMF is of limited activity in TNBC refractory to taxane-based neoadjuvant chemotherapy. In this population, BRCA-1 methylation was associated with a significant decrease in DFS events suggesting a better prognosis and potentially retained activity of DNA-damaging agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Berghoff A, Bago-Horvath Z, De Vries C, Dubsky P, Pluschnig U, Rudas M, Rottenfusser A, Knauer M, Eiter H, Fitzal F, Dieckmann K, Mader RM, Gnant M, Zielinski CC, Steger GG, Preusser M, Bartsch R (2012) Brain metastases free survival differs between breast cancer subtypes. Br J Cancer 106(3):440–446. doi:10.1038/bjc.2011.597

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Bertheau P, Turpin E, Rickman DS, Espie M, de Reynies A, Feugeas JP, Plassa LF, Soliman H, Varna M, de Roquancourt A, Lehmann-Che J, Beuzard Y, Marty M, Misset JL, Janin A, de The H (2007) Exquisite sensitivity of TP53 mutant and basal breast cancers to a dose-dense epirubicin–cyclophosphamide regimen. PLoS Med 4(3):e90. doi:10.1371/journal.pmed.0040090

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Bhattacharyya A, Ear US, Koller BH, Weichselbaum RR, Bishop DK (2000) The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem 275(31):23899–23903. doi:10.1074/jbc.C000276200

    Article  PubMed  CAS  Google Scholar 

  4. Birgisdottir V, Stefansson OA, Bodvarsdottir SK, Hilmarsdottir H, Jonasson JG, Eyfjord JE (2006) Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res 8(4):R38. doi:10.1186/bcr1522

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Bonnefoi H, Piccart M, Bogaerts J, Mauriac L, Fumoleau P, Brain E, Petit T, Rouanet P, Jassem J, Blot E, Zaman K, Cufer T, Lortholary A, Lidbrink E, Andre S, Litiere S, Lago LD, Becette V, Cameron DA, Bergh J, Iggo R (2011) TP53 status for prediction of sensitivity to taxane versus non-taxane neoadjuvant chemotherapy in breast cancer (EORTC 10994/BIG 1-00): a randomised phase 3 trial. Lancet Oncol 12(6):527–539. doi:10.1016/S1470-2045(11)70094-8

    Article  PubMed  CAS  Google Scholar 

  6. Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9(10):701–713. doi:10.1038/nrc2693

    PubMed  CAS  Google Scholar 

  7. Byrski T, Gronwald J, Huzarski T, Grzybowska E, Budryk M, Stawicka M, Mierzwa T, Szwiec M, Wisniowski R, Siolek M, Dent R, Lubinski J, Narod S (2010) Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol 28(3):375–379. doi:10.1200/JCO.2008.20.7019

    Article  PubMed  CAS  Google Scholar 

  8. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295(21):2492–2502. doi:10.1001/jama.295.21.2492

    Article  PubMed  CAS  Google Scholar 

  9. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–2054. doi:10.1056/NEJMra023075

    Article  PubMed  CAS  Google Scholar 

  10. Holstege H, Joosse SA, van Oostrom CT, Nederlof PM, de Vries A, Jonkers J (2009) High incidence of protein-truncating TP53 mutations in BRCA1-related breast cancer. Cancer Res 69(8):3625–3633. doi:10.1158/0008-5472.CAN-08-3426

    Article  PubMed  CAS  Google Scholar 

  11. Ibragimova I, Cairns P (2011) Assays for hypermethylation of the BRCA1 gene promoter in tumor cells to predict sensitivity to PARP-inhibitor therapy. Methods Mol Biol 780:277–291. doi:10.1007/978-1-61779-270-0-17

  12. Kriege M, Jager A, Hooning MJ, Huijskens E, Blom J, van Deurzen CH, Bontenbal M, Collee JM, Menke-Pluijmers MB, Martens JW, Seynaeve C (2012) The efficacy of taxane chemotherapy for metastatic breast cancer in BRCA1 and BRCA2 mutation carriers. Cancer 118(4):899–907. doi:10.1002/cncr.26351

    Article  PubMed  CAS  Google Scholar 

  13. Lee LJ, Alexander B, Schnitt SJ, Comander A, Gallagher B, Garber JE, Tung N (2011) Clinical outcome of triple negative breast cancer in BRCA1 mutation carriers and noncarriers. Cancer 117(14):3093–3100. doi:10.1002/cncr.25911

    Article  PubMed  CAS  Google Scholar 

  14. Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M, Cristofanilli M, Hortobagyi GN, Pusztai L (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26(8):1275–1281. doi:10.1200/JCO.2007.14.4147

    Article  PubMed  Google Scholar 

  15. Lo Nigro C, Vivenza D, Monteverde M, Lattanzio L, Gojis O, Garrone O, Comino A, Merlano M, Quinlan PR, Syed N, Purdie CA, Thompson A, Palmieri C, Crook T (2012) High frequency of complex TP53 mutations in CNS metastases from breast cancer. Br J Cancer 106(2):397–404. doi:10.1038/bjc.2011.464

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Pfeifer GP, Besaratinia A (2009) Mutational spectra of human cancer. Hum Genet 125(5–6):493–506. doi:10.1007/s00439-009-0657-2

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Quinn JE, Kennedy RD, Mullan PB, Gilmore PM, Carty M, Johnston PG, Harkin DP (2003) BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res 63(19):6221–6228

    PubMed  CAS  Google Scholar 

  18. Quinn JE, James CR, Stewart GE, Mulligan JM, White P, Chang GK, Mullan PB, Johnston PG, Wilson RH, Harkin DP (2007) BRCA1 mRNA expression levels predict for overall survival in ovarian cancer after chemotherapy. Clin Cancer Res 13(24):7413–7420. doi:10.1158/1078-0432.CCR-07-1083

    Article  PubMed  CAS  Google Scholar 

  19. Sanchez JA, Dejulius KL, Bronner M, Church JM, Kalady MF (2011) Relative role of methylator and tumor suppressor pathways in ulcerative colitis-associated colon cancer. Inflamm Bowel Dis 17(9):1966–1970. doi:10.1002/ibd.21526

    Google Scholar 

  20. Sharma P, Kimler B, Park Y, Stecklein S, Khan Q, Petroff B, Tawfik O, Jensen R (2011) Association of BRCA1 promoter methylation in triple-negative breast cancer (TNBC) with resistance to standard anthracyline-based adjuvant chemotherapy. J Clin Oncol 29 (Suppl):Abst.1123

  21. Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, Juul N, Leong CO, Calogrias D, Buraimoh A, Fatima A, Gelman RS, Ryan PD, Tung NM, De Nicolo A, Ganesan S, Miron A, Colin C, Sgroi DC, Ellisen LW, Winer EP, Garber JE (2010) Efficacy of neoadjuvant cisplatin in triple-negative breast cancer. J Clin Oncol 28(7):1145–1153. doi:10.1200/JCO.2009.22.4725

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Sorlie T (2011) How to personalise treatment in early breast cancer. Eur J Cancer 47(Suppl 3):S310–S311. doi:10.1016/S0959-8049(11)70182-4

    Article  PubMed  Google Scholar 

  23. Stefansson OA, Villanueva A, Vidal A, Marti L, Esteller M (2012) BRCA1 epigenetic inactivation predicts sensitivity to platinum-based chemotherapy in breast and ovarian cancer. Epigenetics 7(11):1225–1229. doi:10.4161/epi.22561

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Steger G, Greil R, Jakesz R, Lang A, Mlineritsch B, Melbinger-Zeinitzer E, Marth C, Samonigg H, Kubista E, Gnant M (2009) Final results of ABCSG-24, a Randomized Phase III Study comparing epirubicin, docetaxel, and capecitabine (EDC) to epirubicin and docetaxel (ED) as neoadjuvant treatment for early breast cancer and comparing ED/EDC+ trastuzumab (T) to ED/EDC as neoadjuvant treatment for early HER-2 positive breast cancer. Cancer Res 69(Suppl. 24):Abst.1081

  25. Steger GG, Galid A, Gnant M, Mlineritsch B, Lang A, Tausch C, Rudas M, Greil R, Wenzel C, Singer CF, Haid A, Postlberger S, Samonigg H, Luschin-Ebengreuth G, Kwasny W, Klug E, Kubista E, Menzel C, Jakesz R (2007) Pathologic complete response with six compared with three cycles of neoadjuvant epirubicin plus docetaxel and granulocyte colony-stimulating factor in operable breast cancer: results of ABCSG-14. J Clin Oncol 25(15):2012–2018. doi:10.1200/JCO.2006.09.1777

    Article  PubMed  CAS  Google Scholar 

  26. von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, Gerber B, Eiermann W, Hilfrich J, Huober J, Jackisch C, Kaufmann M, Konecny GE, Denkert C, Nekljudova V, Mehta K, Loibl S (2012) Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 30(15):1796–1804. doi:10.1200/JCO.2011.38.8595

    Article  Google Scholar 

  27. Xu Y, Diao L, Chen Y, Liu Y, Wang C, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Deng D, Narod SA, Xie Y (2013) Promoter methylation of BRCA1 in triple-negative breast cancer predicts sensitivity to adjuvant chemotherapy. Ann Oncol 24(6):1498–1505. doi:10.1093/annonc/mdt011

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the medical research budget of the Medical University of Vienna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert Bartsch.

Additional information

Mathilde Foedermayr and Rupert Bartsch contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foedermayr, M., Sebesta, M., Rudas, M. et al. BRCA-1 methylation and TP53 mutation in triple-negative breast cancer patients without pathological complete response to taxane-based neoadjuvant chemotherapy. Cancer Chemother Pharmacol 73, 771–778 (2014). https://doi.org/10.1007/s00280-014-2404-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2404-1

Keywords

Navigation