Skip to main content
Log in

Prognostic value of CALR vs. JAK2V617F mutations on splenomegaly, leukemic transformation, thrombosis, and overall survival in patients with primary fibrosis: a meta-analysis

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The understanding of genetic basis for Philadelphia-negative myeloproliferative neoplasm (MPN) has got much progress in recent years. But the effect of CALR vs. JAK2V617F mutations on the clinical progression and prognosis of primary fibrosis (PMF) remains relatively obscure. In this meta-analysis, we searched Pubmed, Embase, and Web of Science databases for observational studies published until February 2016. Researches that evaluated CALR vs. JAK2V617F mutations on PMF-relevant complications (splenomegaly, leukemic transformation, or thrombosis) and overall survival were selected. Pooled adjust odds ratio (OR), hazard risk (HR), and the corresponding 95 % confidence intervals (CI) were calculated for the CALR-mutant versus the JAK2-mutant categories. Twelve studies involving 435 CALR-mutated and 1116 JAK2V617F PMF patients were analyzed. CALR-mutated patients displayed a lower risk of splenomegaly (OR 0.47, 95 % CI 0.29–0.78) and thrombosis (OR 0.52, 95 % CI 0.29–0.92) but showed no significant difference in the risk of leukemic transformation (OR 0.90, 95 % CI 0.55–1.47) when compared with JAK2-mutated patients. CALR mutation favorably affected overall survival while JAK2 mutation led to poorer survival rate (HR 2.58, 95 % CI 2.08–3.20). This meta-analysis confirmed that a genetic classification of PMF by CALR and JAK2 mutations carried significant prognostic relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES et al (2008) WHO classification of tumors of haematopoietic and lymphoid tissues. IARC Press, Lyon

    Google Scholar 

  2. Tefferi A (2014) Primary myelofibrosis: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol 89(9):915–925

    Article  CAS  PubMed  Google Scholar 

  3. Reilly JT, McMullin MF, Beer PA et al (2012) Guideline for the diagnosis and management of myelofibrosis. Br J Haematol 158(4):453–471

    Article  PubMed  Google Scholar 

  4. Kralovics R, Passamonti F, Buser AS et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352(17):1779–1790

    Article  CAS  PubMed  Google Scholar 

  5. Baxter EJ, Scott LM, Campbell PJ et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365(9464):1054–1061

    Article  CAS  PubMed  Google Scholar 

  6. Levine RL, Wadleigh M, Cools J et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7(4):387–397

    Article  CAS  PubMed  Google Scholar 

  7. Nangalia J, Massie CE, Baxter EJ et al (2013) Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 369(25):2391–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klampfl T, Gisslinger H, Harutyunyan AS et al (2013) Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 369(25):2379–2390

    Article  CAS  PubMed  Google Scholar 

  9. Yang Y, Wang X, Wang C et al (2015) A meta-analysis comparing clinical characteristics and outcomes in CALR-mutated and JAK2V617F essential thrombocythaemia. Int J Hematol 101(2):165–172

    Article  CAS  PubMed  Google Scholar 

  10. Tierney JF, Stewart LA, Ghersi D et al (2007) Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 8:16

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748

    CAS  PubMed  Google Scholar 

  12. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    Article  CAS  PubMed  Google Scholar 

  13. Higgins JP, Thompson SG, Deeks JJ et al (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560

    Article  PubMed  PubMed Central  Google Scholar 

  14. Egger M, Davey Smith G, Schneider M et al (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tefferi A, Lasho TL, Tischer A et al (2014) The prognostic advantage of calreticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants. Blood 124(15):2465–2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tefferi A, Lasho TL, Finke C et al (2014) Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: differences in phenotype and prognostic impact. Leukemia 28(7):1568–1570

    Article  CAS  PubMed  Google Scholar 

  17. Tefferi A, Lasho TL, Finke CM et al (2014) CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 28(7):1472–1477

    Article  CAS  PubMed  Google Scholar 

  18. Kim BH, Cho YU, Bae MH et al (2015) JAK2 V617F, MPL, and CALR Mutations in Korean Patients with Essential Thrombocythemia and Primary Myelofibrosis. J Korean Med Sci 30(7):882–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sazawal S, Singh N, Mahapatra M et al (2015) Calreticulin mutation profile in Indian patients with primary myelofibrosis. Hematology 20(10):567–570

    Article  PubMed  Google Scholar 

  20. Kim SY, Im K, Park SN et al (2015) CALR, JAK2, and MPL mutation profiles in patients with four different subtypes of myeloproliferative neoplasms: primary myelofibrosis, essential thrombocythemia, polycythemia vera, and myeloproliferative neoplasm, unclassifiable. Am J Clin Pathol 143(5):635–644

    Article  CAS  PubMed  Google Scholar 

  21. Tefferi A, Guglielmelli P, Larson DR et al (2014) Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 124(16):2507–2513, quiz 2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qiao C, Sun C, Ouyang Y et al (2014) Clinical importance of different calreticulin gene mutation types in wild-type JAK2 essential thrombocythemia and myelofibrosis patients. Haematologica 99(10):e182–e184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li B, Xu J, Wang J et al (2014) Calreticulin mutations in Chinese with primary myelofibrosis. Haematologica 99(11):1697–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rumi E, Pietra D, Pascutto C et al (2014) Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood 124(7):1062–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Andrikovics H, Krahling T, Balassa K et al (2014) Distinct clinical characteristics of myeloproliferative neoplasms with calreticulin mutations. Haematologica 99(7):1184–1190

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shirane S, Araki M, Morishita S et al (2015) JAK2, CALR, and MPL mutation spectrum in japanese patients with myeloproliferative neoplasms. Haematologica 100(2):e46–e48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guglielmelli P, Rotunno G, Fanelli T et al (2015) Validation of the differential prognostic impact of type 1/type 1-like versus type 2/type 2-like CALR mutations in myelofibrosis. Blood Cancer J 5(10):e360Q

    Article  Google Scholar 

  28. Cervantes F, Dupriez B, Pereira A et al (2009) New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 113(13):2895–2901

    Article  CAS  PubMed  Google Scholar 

  29. Passamonti F, Cervantes F, Vannucchi AM et al (2010) A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 115(9):1703–1708

    Article  CAS  PubMed  Google Scholar 

  30. Guglielmelli P, Nangalia J, Green AR et al (2014) CALR mutations in myeloproliferative neoplasms: hidden behind the reticulum. Am J Hematol 89(5):453–456

    Article  CAS  PubMed  Google Scholar 

  31. Shen HJ, Chao HY, Ding ZX et al (2015) CALR and ASXL1 mutation analysis in 190 patients with essential thrombocythemia. Leuk Lymphoma 56(3):820–822

    Article  PubMed  Google Scholar 

  32. Al Assaf C, Van Obbergh F, Billiet J et al (2015) Analysis of phenotype and outcome in essential thrombocythemia with CALR or JAK2 mutations. Haematologica 100(7):893–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rumi E, Pietra D, Ferretti V et al (2014) JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood 123(10):1544–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fu R, Xuan M, Zhou Y et al (2014) Analysis of calreticulin mutations in Chinese patients with essential thrombocythemia: clinical implications in diagnosis, prognosis and treatment. Leukemia 28(9):1912–1914

    Article  CAS  PubMed  Google Scholar 

  35. Tefferi A, Wassie EA, Guglielmelli P et al (2014) Type 1 versus Type 2 calreticulin mutations in essential thrombocythemia: a collaborative study of 1027 patients. Am J Hematol 89(8):E121–E124

    Article  CAS  PubMed  Google Scholar 

  36. Vannucchi AM, Lasho TL, Guglielmelli P et al (2013) Mutations and prognosis in primary myelofibrosis. Leukemia 27(9):1861–1869

    Article  CAS  PubMed  Google Scholar 

  37. Guglielmelli P, Lasho TL, Rotunno G et al (2014) The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia 28(9):1804–1810

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (No.81472029) and National Natural Science Foundation of Beijing (No.7162155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

OR and 95 % CI for male predominance comparing CALR and JAK2V617F mutations in a random effect model. (GIF 70 kb)

High resolution image (TIF 977 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, YQ., Wu, Y., Wang, F. et al. Prognostic value of CALR vs. JAK2V617F mutations on splenomegaly, leukemic transformation, thrombosis, and overall survival in patients with primary fibrosis: a meta-analysis. Ann Hematol 95, 1391–1398 (2016). https://doi.org/10.1007/s00277-016-2712-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-016-2712-0

Keywords

Navigation