Skip to main content
Log in

The Wilms Tumor-1 (WT1) rs2234593 variant is a prognostic factor in normal karyotype acute myeloid leukemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The single-nucleotide polymorphism (SNP) within Wilms tumor-1 (WT1) exon 7, rs16754, has been arguably reported to be implicated in acute myeloid leukemia (AML) prognosis. We assessed the potential association of selected WT1 SNPs as well as WT1 mutations in normal karyotype (NK)-AML and evaluated the prognostic value of these normal gene variants. Diagnostic samples from a series of 474 young adult NK-AML patients were used to genotype five WT1 SNPs using TaqMan assays and to directly sequence WT1 exons 7 and 9. Analysis of five WT1 gene variants showed an association of rs2234593 allele C with WT1 Ex7 mutation. Prognostic study of the same variants identified rs2234593 significantly associated with relapse and overall survival (OS). Patients with rs2234593AA/AC showed significantly higher 10-year OS (50 vs 36 %, hazard ratio (HR) = 0.69 (0.52–0.90), p = 0.006) and lower cumulative incidence of relapse (CIR) (36 vs 51 %, HR = 0.62 (0.45–0.86), p = 0.004) compared to those with rs2234593CC. The effect of AA genotype on CIR remained significant after adjustment for basic covariates including FLT3 internal-tandem duplication (FLT3-ITD) and nucleophosmin 1 (NPM1) mutations (HR = 0.60 (0.41–0.89), p = 0.009), with some evidence of improved survival (HR = 0.75 (0.55–1.03), p = 0.07). A multivariate analysis showed WT1 Ex7-mutant as the major relapse predictor, with a tendency for rs2234593-A effect after allowing for Ex7 mutation (p = 0.07). No adjusted risk benefit was found for previously reported rs16754-G. In conclusion, WT1 normal gene variant rs2234593 is associated with mutational status of WT1 Ex7 and is a further prognostic marker independent from FLT3-ITD and NPM1 mutations in NK-AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cheson BD, Bennett JM, Kopecky KJ, Buchner T, Willman CL et al (2003) Revised recommendations of the International Working Group for Diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol 21:4642–9

    Article  PubMed  Google Scholar 

  2. Cilloni D, Renneville A, Hermitte F, Hills RK, Daly S et al (2009) Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol 27:5195–201

    Article  PubMed  CAS  Google Scholar 

  3. Consortium TWTCC (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–78

    Article  Google Scholar 

  4. Damm F, Heuser M, Morgan M, Yun H, Grosshennig A et al (2010) Single nucleotide polymorphism in the mutational hotspot of WT1 predicts a favorable outcome in patients with cytogenetically normal acute myeloid leukemia. J Clin Oncol 28:578–85

    Article  PubMed  CAS  Google Scholar 

  5. Di Bernardo MC, Crowther-Swanepoel D, Broderick P, Webb E, Sellick G et al (2008) A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nat Genet 40:1204–10

    Article  PubMed  Google Scholar 

  6. Fritz DT, Jiang S, Xu J, Rogers MB (2006) A polymorphism in a conserved posttranscriptional regulatory motif alters bone morphogenetic protein 2 (BMP2) RNA: protein interactions. Mol Endocrinol 20:1574–86

    Article  PubMed  CAS  Google Scholar 

  7. Furuhata A, Murakami M, Ito H, Gao S, Yoshida K et al (2009) GATA-1 and GATA-2 binding to 3' enhancer of WT1 gene is essential for its transcription in acute leukemia and solid tumor cell lines. Leukemia 23:1270–7

    Article  PubMed  CAS  Google Scholar 

  8. Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D et al (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39:631–7

    Article  PubMed  CAS  Google Scholar 

  9. Harada H, Kitagawa M, Tanaka N, Yamamoto H, Harada K et al (1993) Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and -2. Science 259:971–4

    Article  PubMed  CAS  Google Scholar 

  10. Ho PA, Kuhn J, Gerbing RB, Pollard JA, Zeng R et al (2011) WT1 synonymous single nucleotide polymorphism rs16754 correlates with higher mRNA expression and predicts significantly improved outcome in favorable-risk pediatric acute myeloid leukemia: a report from the children’s oncology group. J Clin Oncol 29:704–11

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Hollink IH, van den Heuvel-Eibrink MM, Zimmermann M, Balgobind BV, Arentsen-Peters ST, et al. 2010. No Prognostic impact of the WT1 gene single nucleotide polymorphism rs16754 in pediatric acute myeloid leukemia. J Clin Oncol

  12. Inoue K, Ogawa H, Yamagami T, Soma T, Tani Y et al (1996) Long-term follow-up of minimal residual disease in leukemia patients by monitoring WT1 (Wilms tumor gene) expression levels. Blood 88:2267–78

    PubMed  CAS  Google Scholar 

  13. Jones AV, Chase A, Silver RT, Oscier D, Zoi K et al (2009) JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 41:446–9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Khandanpour C, Thiede C, Valk PJ, Sharif-Askari E, Nuckel H et al (2010) A variant allele of growth factor independence 1 (GFI1) is associated with acute myeloid leukemia. Blood 115:2462–72

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Kilpivaara O, Mukherjee S, Schram AM, Wadleigh M, Mullally A et al (2009) A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet 41:455–9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE et al (2001) The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 98:1752–9

    Article  PubMed  CAS  Google Scholar 

  17. Kwan T, Benovoy D, Dias C, Gurd S, Provencher C et al (2008) Genome-wide analysis of transcript isoform variation in humans. Nat Genet 40:225–31

    Article  PubMed  CAS  Google Scholar 

  18. Luna I, Such E, Cervera J, Barragan E, Jimenez-Velasco A et al (2012) Analysis of SNP rs16754 of WT1 gene in a series of de novo acute myeloid leukemia patients. Ann Hematol 91:1845–53

    Article  PubMed  CAS  Google Scholar 

  19. Luo S, Yu K, Yan QX, Shen ZJ, Wu JB et al (2014) Analysis of WT1 mutations, expression levels and single nucleotide polymorphism rs16754 in de novo non-M3 acute myeloid leukemia. Leuk Lymphoma 55:349–57

    Article  PubMed  CAS  Google Scholar 

  20. Milani L, Gupta M, Andersen M, Dhar S, Fryknas M et al (2007) Allelic imbalance in gene expression as a guide to cis-acting regulatory single nucleotide polymorphisms in cancer cells. Nucleic Acids Res 35:e34

    Article  PubMed  PubMed Central  Google Scholar 

  21. Palin K, Taipale J, Ukkonen E (2006) Locating potential enhancer elements by comparative genomics using the EEL software. Nat Protoc 1:368–74

    Article  PubMed  CAS  Google Scholar 

  22. Papaemmanuil E, Hosking FJ, Vijayakrishnan J, Price A, Olver B et al (2009) Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet 41:1006–10

    Article  PubMed  CAS  Google Scholar 

  23. Paschka P, Marcucci G, Ruppert AS, Whitman SP, Mrozek K et al (2008) Wilms’ tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 26:4595–602

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Schnittger S, Bacher U, Eder C, Lohse P, Haferlach C, et al. 2011. A copy number repeat polymorphism in the transactivation domain of the CEPBA gene is possibly associated with a protective effect against acquired CEBPA mutations: an analysis in 1135 patients with AML and 187 healthy controls. Exp Hematol

  25. Song H, Ramus SJ, Tyrer J, Bolton KL, Gentry-Maharaj A et al (2009) A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2. Nat Genet 41:996–1000

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Tamaki H, Ogawa H, Inoue K, Soma T, Yamagami T et al (1996) Increased expression of the Wilms tumor gene (WT1) at relapse in acute leukemia. Blood 88:4396–8

    PubMed  CAS  Google Scholar 

  27. Tuupanen S, Turunen M, Lehtonen R, Hallikas O, Vanharanta S et al (2009) The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet 41:885–90

    Article  PubMed  CAS  Google Scholar 

  28. Virappane P, Gale R, Hills R, Kakkas I, Summers K et al (2008) Mutation of the Wilms’ tumor 1 gene is a poor prognostic factor associated with chemotherapy resistance in normal karyotype acute myeloid leukemia: the United Kingdom Medical Research Council Adult Leukaemia Working Party. J Clin Oncol 26:5429–35

    Article  PubMed  CAS  Google Scholar 

  29. Wasserman WW, Sandelin A (2004) Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 5:276–87

    Article  PubMed  CAS  Google Scholar 

  30. Willman CL, Sever CE, Pallavicini MG, Harada H, Tanaka N et al (1993) Deletion of IRF-1, mapping to chromosome 5q31.1, in human leukemia and preleukemic myelodysplasia. Science 259:968–71

    Article  PubMed  CAS  Google Scholar 

  31. Yang C, Romaniuk PJ (2008) The ratio of +/−KTS splice variants of the Wilms’ tumour suppressor protein WT1 mRNA is determined by an intronic enhancer. Biochem Cell Biol 86:312–21

    Article  PubMed  CAS  Google Scholar 

  32. Zhang X, Xing G, Fraizer GC, Saunders GF (1997) Transactivation of an intronic hematopoietic-specific enhancer of the human Wilms’ tumor 1 gene by GATA-1 and c-Myb. J Biol Chem 272:29272–80

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmadreza Niavarani.

Ethics declarations

Conflicts of interest

This work was supported by the Cancer Research UK (D. B.). A. N. was funded by a grant from the Queen Mary University of London, and S. H. and R. S. were funded by the Cancer Research UK. The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niavarani, A., Horswell, S., Sadri, R. et al. The Wilms Tumor-1 (WT1) rs2234593 variant is a prognostic factor in normal karyotype acute myeloid leukemia. Ann Hematol 95, 179–190 (2016). https://doi.org/10.1007/s00277-015-2534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-015-2534-5

Keywords

Navigation