Skip to main content

Advertisement

Log in

Multimodality Image Fusion–Guided Procedures: Technique, Accuracy, and Applications

  • Review
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Personalized therapies play an increasingly critical role in cancer care: Image guidance with multimodality image fusion facilitates the targeting of specific tissue for tissue characterization and plays a role in drug discovery and optimization of tailored therapies. Positron-emission tomography (PET), magnetic resonance imaging (MRI), and contrast-enhanced computed tomography (CT) may offer additional information not otherwise available to the operator during minimally invasive image-guided procedures, such as biopsy and ablation. With use of multimodality image fusion for image-guided interventions, navigation with advanced modalities does not require the physical presence of the PET, MRI, or CT imaging system. Several commercially available methods of image-fusion and device navigation are reviewed along with an explanation of common tracking hardware and software. An overview of current clinical applications for multimodality navigation is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Crommelin DJ, Storm G, Luijten P (2011) “Personalised medicine” through “personalised medicines”: time to integrate advanced, non-invasive imaging approaches and smart drug delivery systems. Int J Pharm 415:5–8

    Article  PubMed  CAS  Google Scholar 

  2. Witte MH (2011) Translational/personalized medicine, pharmaco/surgico/radiogenomics, lymphatic spread of cancer, and medical ignoromes. J Surg Oncol 103:501–507

    Article  PubMed  Google Scholar 

  3. Tandon P, Farahani K (2011) NCI image-guided drug delivery summit. Cancer Res 71:314–317

    Article  PubMed  CAS  Google Scholar 

  4. Venkatesan AM, Kadoury S, Abi-Jaoudeh N et al (2011) Real-time FDG PET guidance during biopsies and radiofrequency ablation using multimodality fusion with electromagnetic navigation. Radiology 260:848–856

    Article  PubMed  Google Scholar 

  5. Krucker J, Xu S, Glossop N et al (2007) Electromagnetic tracking for thermal ablation and biopsy guidance: clinical evaluation of spatial accuracy. J Vasc Interv Radiol 18:1141–1150

    Article  PubMed  Google Scholar 

  6. Krucker J, Xu S, Venkatesan A et al (2011) Clinical utility of real-time fusion guidance for biopsy and ablation. J Vasc Interv Radiol 22:515–524

    Article  PubMed  Google Scholar 

  7. Giesel FL, Mehndiratta A, Locklin J et al (2009) Image fusion using CT, MRI and PET for treatment planning, navigation and follow up in percutaneous RFA. Exp Oncol 31:106–114

    PubMed  CAS  Google Scholar 

  8. Wood BJ, Kruecker J, Abi-Jaoudeh N et al (2010) Navigation systems for ablation. J Vasc Interv Radiol 21:S257–S263

    Article  PubMed  Google Scholar 

  9. Wood BJ, Zhang H, Durrani A et al (2005) Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Interv Radiol 16:493–505

    Article  PubMed  Google Scholar 

  10. Abi-Jaoudeh N, Glossop N, Dake M et al (2010) Electromagnetic navigation for thoracic aortic stent-graft deployment: a pilot study in swine. J Vasc Interv Radiol 21:888–895

    Article  PubMed  Google Scholar 

  11. Hassfeld S, Muhling J, Zoller J (1995) Intraoperative navigation in oral and maxillofacial surgery. Int J Oral Maxillofac Surg 24:111–119

    Article  PubMed  CAS  Google Scholar 

  12. Phee SJ, Yang K (2010) Interventional navigation systems for treatment of unresectable liver tumor. Med Biol Eng Comput 48:103–311

    Article  PubMed  Google Scholar 

  13. Racadio JM, Babic D, Homan R et al (2007) D guidance in the interventional radiology suite. Am J Roentgenol 189:W357–W364

    Article  Google Scholar 

  14. Appelbaum L, Sosna J, Nissenbaum Y, Benshtein A, Goldberg SN (2011) Electromagnetic navigation system for CT-guided biopsy of small lesions. Am J Roentgenol 196:1194–1200

    Article  Google Scholar 

  15. Santos RS, Gupta A, Ebright MI et al (2010) Electromagnetic navigation to aid radiofrequency ablation and biopsy of lung tumors. Annals Thorac Surg 89:265–268

    Article  Google Scholar 

  16. Rosenow JM, Sootsman WK (2007) Application accuracy of an electromagnetic field-based image-guided navigation system. Stereotact Funct Neurosurg 85:75–81

    Article  PubMed  Google Scholar 

  17. Penzkofer T, Bruners P, Isfort P et al (2011) Free-hand CT-based electromagnetically guided interventions: accuracy, efficiency and dose usage. Minim Invasive Ther Allied Technol 20:226–233

    Article  PubMed  Google Scholar 

  18. Ricci WM, Russell TA, Kahler DM, Terrill-Grisoni L, Culley P (2008) A comparison of optical and electromagnetic computer-assisted navigation systems for fluoroscopic targeting. J Orthop Trauma 22:190–194

    Article  PubMed  Google Scholar 

  19. Rombaux P, Ledeghen S, Hamoir M et al (2003) Computer assisted surgery and endoscopic endonasal approach in 32 procedures. Acta Otorhinolaryngol Belg 57:131–137

    PubMed  Google Scholar 

  20. Anon JB (1998) Computer-aided endoscopic sinus surgery. Laryngoscope 108:949–961

    Article  PubMed  CAS  Google Scholar 

  21. Liodakis E, Chu K, Westphal R et al (2011) Assessment of the accuracy of infrared and electromagnetic navigation using an industrial robot: which factors are influencing the accuracy of navigation? J Orthop Res 29:1476–1483

    Article  PubMed  Google Scholar 

  22. Ecke U, Luebben B, Maurer J, Boor S, Mann WJ (2003) Comparison of different computer-aided surgery systems in skull base surgery. Skull Base 13:43–50

    Article  PubMed  Google Scholar 

  23. Maeda NOK, Higashihara H et al (2008) A novel cone-beam CT guided intervention by XperGuide: accuracy and feasibility in a phantom model. J Vasc Interv Radiol 19:S90

    Article  Google Scholar 

  24. Tam A, Mohamed A, Pfister M, Rohm E, Wallace MJ (2009) C-arm cone beam computed tomographic needle path overlay for fluoroscopic-guided placement of translumbar central venous catheters. Cardiovasc Interv Radiol 32(4):820–824

    Article  Google Scholar 

  25. Mohlenbruch M, Nelles M, Thomas D et al (2010) Cone-beam computed tomography-guided percutaneous radiologic gastrostomy. Cardiovasc Interv Radiol 33:315–320

    Article  Google Scholar 

  26. Wilhelm KE, Rudorf H, Greschus S et al (2009) Cone-beam computed tomography (CBCT) dacryocystography for imaging of the nasolacrimal duct system. Klin Neuroradiol 19:283–291

    Article  PubMed  Google Scholar 

  27. Braak SJ, van Strijen MJ, van Leersum M, van Es HW, van Heesewijk JP (2010) Real-time 3D fluoroscopy guidance during needle interventions: technique, accuracy, and feasibility. Am J Roentgenol 194:W445–W451

    Article  CAS  Google Scholar 

  28. Leschka SC, Babic D, El Shikh S, Wossmann C, Schumacher M, Taschner CA (2012) C-arm cone beam computed tomography needle path overlay for image-guided procedures of the spine and pelvis. Neuroradiology 54:215–223

    Article  PubMed  Google Scholar 

  29. Huber J, Wegner I, Meinzer HP et al (2011) Navigated renal access using electromagnetic tracking: an initial experience [multimedia article]. Surg Endosc 25:1307–1312

    Article  PubMed  Google Scholar 

  30. Tatli S, Gerbaudo VH, Mamede M, Tuncali K, Shyn PB, Silverman SG (2010) Abdominal masses sampled at PET/CT-guided percutaneous biopsy: Initial experience with registration of prior PET/CT images. Radiology 256:305–311

    Article  PubMed  Google Scholar 

  31. Baegert C, Villard C, Schreck P, Soler L, Gangi A (2007) Trajectory optimization for the planning of percutaneous radiofrequency ablation of hepatic tumors. Comput Aided Surg 12:82–90

    PubMed  Google Scholar 

  32. Wood BJ, Locklin JK, Viswanathan A et al (2007) Technologies for guidance of radiofrequency ablation in the multimodality interventional suite of the future. J Vasc Interv Radiol 18:9–24

    Article  PubMed  Google Scholar 

  33. McCreedy ES, Cheng R, Hemler PF, Viswanathan A, Wood BJ, McAuliffe MJ (2006) Radiofrequency ablation registration, segmentation, and fusion tool. IEEE Trans Inf Technol Biomed 10:490–496

    Article  PubMed  Google Scholar 

  34. Spelle L, Ruijters D, Babic D et al (2009) First clinical experience in applying XperGuide in embolization of jugular paragangliomas by direct intratumoral puncture. Int J Comput Assist Radiol Surg 4:527–533

    Article  PubMed  Google Scholar 

  35. Girard EE, Al-Ahmad A, Rosenberg J et al (2011) Contrast-enhanced C-arm CT evaluation of radiofrequency ablation lesions in the left ventricle. JACC Cardiovasc Imaging 4:259–268

    Article  PubMed  Google Scholar 

  36. Manstad-Hulaas F, Ommedal S, Tangen GA, Aadahl P, Hernes TN (2007) Side-branched AAA stent graft insertion using navigation technology: a phantom study. Eur Surg Res 39:364–371

    Article  PubMed  CAS  Google Scholar 

  37. Dijkstra ML, Eagleton MJ, Greenberg RK, Mastracci T, Hernandez A (2011) Intraoperative C-arm cone-beam computed tomography in fenestrated/branched aortic endografting. J Vasc Surg 53:583–590

    Article  PubMed  Google Scholar 

  38. Kobeiter H, Nahum J, Becquemin JP (2011) Zero-contrast thoracic endovascular aortic repair using image fusion. Circulation 124:e280–e282

    Article  PubMed  Google Scholar 

  39. Garcia JA, Bhakta S, Kay J et al (2009) On-line multi-slice computed tomography interactive overlay with conventional X-ray: a new and advanced imaging fusion concept. Int J Cardiol 133:e101–e105

    Article  PubMed  Google Scholar 

  40. Deschamps F, Solomon SB, Thornton RH et al (2010) Computed analysis of three-dimensional cone-beam computed tomography angiography for determination of tumor-feeding vessels during chemoembolization of liver tumor: a pilot study. Cardiovasc Interv Radiol. doi: 10.1007/s00270-010-9846-6

    Google Scholar 

  41. Leira HO, Amundsen T, Tangen GA, Bo LE, Manstad-Hulaas F, Lango T (2011) A novel research platform for electromagnetic navigated bronchoscopy using cone beam CT imaging and an animal model. Minim Invasive Ther Allied Technol 20:30–41

    Article  PubMed  Google Scholar 

  42. Schwarz Y, Greif J, Becker HD, Ernst A, Mehta A (2006) Real-time electromagnetic navigation bronchoscopy to peripheral lung lesions using overlaid CT images: the first human study. Chest 129:988–994

    Article  PubMed  Google Scholar 

  43. Bechara R, Parks C, Ernst A (2011) Electromagnetic navigation bronchoscopy. Future Oncol 7:31–36

    Article  PubMed  Google Scholar 

  44. Gildea TR, Mazzone PJ, Karnak D, Meziane M, Mehta AC (2006) Electromagnetic navigation diagnostic bronchoscopy: a prospective study. Am J Respir Crit Care Med 174:982–989

    Article  PubMed  Google Scholar 

  45. Turkbey B, Mani H, Shah V et al (2011) Multiparametric 3T prostate magnetic resonance imaging to detect cancer: Histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol 186:1818–1824

    Article  PubMed  Google Scholar 

  46. Xu S, Kruecker J, Turkbey B et al (2008) Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Comput Aided Surgery 13:255–264

    Article  Google Scholar 

  47. Pinto PA, Chung PH, Rastinehad AR et al (2011) Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging. J Urol 186:1281–1285

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Peter Pinto, Peter Choyke, Baris Turkbey, Julie Locklin, and Stacey Gates for their contributions toward the prostate fusion biopsy section. We also acknowledge Ankur Kapoor for contributions on the optical-tracking section. This work was supported in part by the National Institutes of Health (NIH) Center for Interventional Oncology and the NIH Intramural Research Program. This work was also supported by collaborative research and development agreements (NIH and Philips Health Care). The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the United States Government.

Conflict of interest

Nadine Abi-Jaoudeh, Aradhana M. Venkatesan, Elliot Levy, Bradford J. Wood have no conflicts of interest; however, the NIH has a cooperative research and development agreement with Philips Health Care Company. Jochen Kruecker is a salaried employee of Royal Philips Electronics. Samuel Kadoury and Hicham Kobeiter have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Abi-Jaoudeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abi-Jaoudeh, N., Kruecker, J., Kadoury, S. et al. Multimodality Image Fusion–Guided Procedures: Technique, Accuracy, and Applications. Cardiovasc Intervent Radiol 35, 986–998 (2012). https://doi.org/10.1007/s00270-012-0446-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-012-0446-5

Keywords

Navigation