Skip to main content
Log in

Stereotactic Radiofrequency Ablation (SRFA) of Liver Lesions: Technique Effectiveness, Safety, and Interoperator Performance

  • Clinical Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate technique effectiveness, safety, and interoperator performance of stereotactic radiofrequency ablation (SRFA) of liver lesions.

Methods

Retrospective review including 90 consecutive patients from January 2008 to January 2010 with 106 computed tomography-guided SRFA sessions using both single and multiple electrodes for the treatment of 177 lesions: 72 hepatocellular carcinoma (HCC) and 105 metastases with a mean size of 2.9 cm (range 0.5–11 cm). Technique effectiveness and 1-year local recurrence were evaluated by computed tomographic scans. Complications, mortality, and hospital days were recorded. The performance between an experienced and inexperienced interventional radiologist was compared.

Results

The overall technique effectiveness after a single SRFA was 95.5% (93.1% for HCC and 97.1% for metastases). Four of the eight unsuccessfully treated lesions could be retreated (secondary technique effectiveness of 97.7%). Local recurrence at 1 year was 2.9%. Technique effectiveness was significantly different for lesions <5 cm (96.7%) and >5 cm (87.5%) (P = 0.044) but not for lesions <3 cm (95.9%) and 3–5 cm (100%). Compared to clear parenchymal property (97.3%), vessel vicinity (93.3%) (P = 0.349) and subcapsular (95.2%) (P = 0.532) had no, but hollow viscera vicinity (83.3%) had a significantly lower technique effectiveness (P = 0.020). Mortality rate was 0.9%. Major complications and hospital days were higher for cirrhosis Child-Pugh B (20%, 7.2 days) than Child-Pugh A (3.1%, 4.7 days) patients and for metastases (5.1%, 4.3 days). There was no significant difference in interoperator performance.

Conclusion

SRFA allowed for efficient, reliable, and safe ablation of large-volume liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bale R, Widmann G (2007) Navigated CT-guided interventions. Minim Invasive Ther Allied Technol 16:196–204

    Article  PubMed  Google Scholar 

  2. Bale R, Widmann G, Stoffner DI (2010) Stereotaxy: breaking the limits of current radiofrequency ablation techniques. Eur J Radiol 75:32–36

    Article  PubMed  Google Scholar 

  3. Bale R, Widmann G, Haidu M (2010) Stereotactic radiofrequency ablation. Cardiovasc Intervent Radiol. doi:10.1007/s00270-010-9966-z

  4. Chen MH, Wei Y, Yan K et al (2006) Treatment strategy to optimize radiofrequency ablation for liver malignancies. J Vasc Interv Radiol 17:671–683

    Article  PubMed  Google Scholar 

  5. Crocetti L, de Baere T, Lencioni R (2010) Quality improvement guidelines for radiofrequency ablation of liver tumours. Cardiovasc Intervent Radiol 33:11–17

    Article  PubMed  Google Scholar 

  6. Dupuy DE, Goldberg SN (2001) Image-guided radiofrequency tumor ablation: challenges and opportunities—part II. J Vasc Interv Radiol 12:1135–1148

    Article  PubMed  CAS  Google Scholar 

  7. Gazelle GS, Goldberg SN, Solbiati L, Livraghi T (2000) Tumor ablation with radio-frequency energy. Radiology 217:633–646

    PubMed  CAS  Google Scholar 

  8. Goldberg SN, Gazelle GS, Mueller PR (2000) Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am J Roentgenol 174:323–331

    PubMed  CAS  Google Scholar 

  9. Goldberg SN, Grassi CJ, Cardella JF et al (2009) Image-guided tumor ablation: standardization of terminology and reporting criteria. J Vasc Interv Radiol 20(7 Suppl):S377–S390

    Article  PubMed  Google Scholar 

  10. Head HW, Dodd GD III, Dalrymple NC et al (2007) Percutaneous radiofrequency ablation of hepatic tumors against the diaphragm: frequency of diaphragmatic injury. Radiology 243:877–884

    Article  PubMed  Google Scholar 

  11. Hori T, Nagata K, Hasuike S et al (2003) Risk factors for the local recurrence of hepatocellular carcinoma after a single session of percutaneous radiofrequency ablation. J Gastroenterol 38:977–981

    Article  PubMed  Google Scholar 

  12. Jacob AL, Regazzoni P, Steinbrich W, Messmer P (2000) The multifunctional therapy room of the future: image guidance, interdisciplinarity, integration and impact on patient pathways. Eur Radiol 10:1763–1769

    Article  PubMed  CAS  Google Scholar 

  13. Lau WY, Lai EC (2009) The current role of radiofrequency ablation in the management of hepatocellular carcinoma: a systematic review. Ann Surg 249:20–25

    Article  PubMed  Google Scholar 

  14. Lee JM, Han JK, Kim HC et al (2007) Switching monopolar radiofrequency ablation technique using multiple, internally cooled electrodes and a multichannel generator: ex vivo and in vivo pilot study. Invest Radiol 42:163–171

    Article  PubMed  Google Scholar 

  15. Lencioni R, Della Pina C, Bartolozzi C (2005) Percutaneous image-guided radiofrequency ablation in the therapeutic management of hepatocellular carcinoma. Abdom Imaging 30:401–408

    Article  PubMed  CAS  Google Scholar 

  16. Lin SM, Lin CC, Chen WT et al (2007) Radiofrequency ablation for hepatocellular carcinoma: a prospective comparison of four radiofrequency devices. J Vasc Interv Radiol 18:1118–1125

    Article  PubMed  Google Scholar 

  17. Livraghi T, Goldberg SN, Lazzaroni S et al (1999) Small hepatocellular carcinoma: treatment with radio-frequency ablation versus ethanol injection. Radiology 210:655–661

    PubMed  CAS  Google Scholar 

  18. Livraghi T, Goldberg SN, Lazzaroni S et al (2000) Hepatocellular carcinoma: radio-frequency ablation of medium and large lesions. Radiology 214:761–768

    PubMed  CAS  Google Scholar 

  19. Livraghi T, Solbiati L, Meloni MF et al (2003) Treatment of focal liver tumors with percutaneous radio-frequency ablation: complications encountered in a multicenter study. Radiology 226:441–451

    Article  PubMed  Google Scholar 

  20. Livraghi T, Solbiati L, Meloni F et al (2003) Percutaneous radiofrequency ablation of liver metastases in potential candidates for resection: the “test-of-time approach”. Cancer 97:3027–3035

    Article  PubMed  Google Scholar 

  21. Mulier S, Mulier P, Ni Y et al (2002) Complications of radiofrequency coagulation of liver tumours. Br J Surg 89:1206–1222

    Article  PubMed  CAS  Google Scholar 

  22. Mulier S, Ni Y, Jamart J et al (2005) Local recurrence after hepatic radiofrequency coagulation: multivariate meta-analysis and review of contributing factors. Ann Surg 242:158–171

    Article  PubMed  Google Scholar 

  23. Nakai M, Sato M, Sahara S et al (2009) Radiofrequency ablation assisted by real-time virtual sonography and CT for hepatocellular carcinoma undetectable by conventional sonography. Cardiovasc Intervent Radiol 32:62–69

    Article  PubMed  Google Scholar 

  24. Ng KK, Poon RT, Lo CM et al (2008) Analysis of recurrence pattern and its influence on survival outcome after radiofrequency ablation of hepatocellular carcinoma. J Gastrointest Surg 12:183–191

    Article  PubMed  Google Scholar 

  25. Okuwaki Y, Nakazawa T, Shibuya A et al (2008) Intrahepatic distant recurrence after radiofrequency ablation for a single small hepatocellular carcinoma: risk factors and patterns. J Gastroenterol 43:71–78

    Article  PubMed  Google Scholar 

  26. Rhim H, Goldberg SN, Dodd GD III et al (2001) Essential techniques for successful radio-frequency thermal ablation of malignant hepatic tumors. Radiographics 21(Spec No):S17–S35

    Google Scholar 

  27. Rhim H, Dodd GD III, Chintapalli KN et al (2004) Radiofrequency thermal ablation of abdominal tumors: lessons learned from complications. Radiographics 24:41–52

    Article  PubMed  Google Scholar 

  28. Rhim H, Lim HK, Kim YS et al (2008) Radiofrequency ablation of hepatic tumors: lessons learned from 3000 procedures. J Gastroenterol Hepatol 23:1492–1500

    Article  PubMed  Google Scholar 

  29. Rhim H, Choi D, Kim YS et al (2010) Ultrasonography-guided percutaneous radiofrequency ablation of hepatocellular carcinomas: a feasibility scoring system for planning sonography. Eur J Radiol 75:253–258

    Article  PubMed  Google Scholar 

  30. Sakuhara Y, Shimizu T, Abo D et al (2007) Influence of surgical staples on radiofrequency ablation using multitined expandable electrodes. Cardiovasc Intervent Radiol 30:1201–1205

    Article  PubMed  Google Scholar 

  31. Seror O, N’Kontchou G, Ibraheem M et al (2008) Large (≥5.0-cm) HCCs: multipolar RF ablation with three internally cooled bipolar electrodes—initial experience in 26 patients. Radiology 248:288–296

    Article  PubMed  Google Scholar 

  32. Solbiati L, Livraghi T, Goldberg SN et al (2001) Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients. Radiology 221:159–166

    Article  PubMed  CAS  Google Scholar 

  33. Stang A, Fischbach R, Teichmann W et al (2009) A systematic review on the clinical benefit and role of radiofrequency ablation as treatment of colorectal liver metastases. Eur J Cancer 45:1748–1756

    Article  PubMed  Google Scholar 

  34. Stoffner R, Augscholl C, Widmann G et al (2009) Accuracy and feasibility of frameless stereotactic and robot-assisted CT-based puncture in interventional radiology: a comparative phantom study. Rofo 181:851–858

    Article  PubMed  CAS  Google Scholar 

  35. Tacke J, Mahnken A, Roggan A, Gunther RW (2004) Multipolar radiofrequency ablation: first clinical results. Rofo 176:324–329

    Article  PubMed  CAS  Google Scholar 

  36. Wagner A, Schicho K, Birkfellner W et al (2002) Quantitative analysis of factors affecting intraoperative precision and stability of optoelectronic and electromagnetic tracking systems. Med Phys 29:905–912

    Article  PubMed  CAS  Google Scholar 

  37. Widmann G, Bodner G, Bale R (2009) Tumour ablation: technical aspects. Cancer Imaging 9(Spec No A):S63–S67

    Google Scholar 

  38. Widmann G, Schullian P, Haidu M et al (2010) Respiratory motion control for stereotactic and robotic liver interventions. Int J Med Robot 6:343–349

    Article  PubMed  Google Scholar 

  39. Widmann G, Schullian P, Haidu M et al (2011) Targeting accuracy of CT-guided stereotaxy for radiofrequency ablation of liver tumours. Minim Invasive Ther Allied Technol. doi:10.3109/13645706.2010.533923

  40. Wood BJ, Zhang H, Durrani A et al (2005) Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Interv Radiol 16:493–505

    Article  PubMed  Google Scholar 

  41. Zhang H, Banovac F, Lin R et al (2006) Electromagnetic tracking for abdominal interventions in computer aided surgery. Comput Aided Surg 11:127–136

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the radiation technicians: Bob Lang, RT, Martin Fasser, RT, Martin Knoflach, RT, Julia Mahlknecht, RT, and Florian Schanda, RT.

Conflict of interest

Gerlig Widmann, Peter Schullian, and Marion Haidu have no conflict of interest. Reto Bale is a coinventor of the stereotactic aiming device used in this study (Atlas, Medical Intelligence GesmbH, Schwabmünchen, Germany) and a coshareholder in its financial returns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reto Bale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Widmann, G., Schullian, P., Haidu, M. et al. Stereotactic Radiofrequency Ablation (SRFA) of Liver Lesions: Technique Effectiveness, Safety, and Interoperator Performance. Cardiovasc Intervent Radiol 35, 570–580 (2012). https://doi.org/10.1007/s00270-011-0200-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-011-0200-4

Keywords

Navigation