Skip to main content

Advertisement

Log in

Complete remission of cancer in late-stage disease by radiation and transfer of allogeneic MHC-matched immune T cells: lessons from GvL studies in animals

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Most immunotherapy studies in animal tumor models are performed in early stages of the disease. Reports on the studies of treatment in late stages of tumor growth and metastasis are much rarer. To guide future efforts for treatment in late-stage disease, a model of effective immune rejection of advanced metastasized cancer is reviewed and lessons therefrom are summarized. Already cachectic DBA/2 mice with a subcutaneously transplanted syngeneic tumor (ESb-MP lymphoma) of 1.5 cm diameter and with macroscopic liver and kidney metastases at 4 weeks could be successfully treated by a combination of sublethal (5 Gy) irradiation followed by a single transfer of 20 million anti-tumor immune spleen cells from tumor-resistant allogeneic MHC-B10.D2 mice. Following intravenous cell transfer, the primary tumors became encapsulated and were eventually rejected from the skin while visceral metastases gradually disappeared leaving behind only scar tissue. There was wound-healing at the site of the rejected primary tumor, and the animals survived long term without any tumor recurrence. The complete eradication of late-stage disease by adoptive cellular immunotherapy could be corroborated noninvasively by 31P-NMR spectroscopy of primary tumors and by 1H-NMR microimaging of liver metastases. Conclusions from functional mechanistic studies in this model are summarized and clinical implications discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADI:

Adoptive cellular immunotherapy

allo-HSC:

Allogeneic hematopoietic stem cell

APC:

Professional antigen-presenting cell

BM:

Bone marrow

CD4:

Receptor for MHC class II

CD8:

Receptor for MHC class I

CD40:

Receptor for the co-stimulator CD154 (CD40L)

CMT:

Central memory T cell

CTL:

Cytotoxic T lymphocyte

CTLP:

Precursor of CTL

CXCR4:

Chemokine receptor for SDF-1

DC:

Dendritic cell

DLI:

Donor lymphocyte infusion

env:

Envelop gene

EMT:

Effector memory T cell

FDG:

Fluorescein-β-d-galactopyranoside

β-Gal:

β-galactosidase

mAb:

Monoclonal antibody

GOT:

Glutamate-oxaloacetate transaminase

GPT:

Glutamate-pyruvate transaminase

GvH:

Graft versus host

GvHD:

Graft-versus-host disease

GvL:

Graft-versus-leukemia effect

Gy:

Gray

H:

Histocompatibility

HLA:

Human leukocyte antigen

HvG:

Host versus graft

HSC:

Hematopoietic stem cell

IAP:

Intracisternal proviral A-type particle

iNOS:

Inducible nitric oxid synthase

Il-2Rβ, Il-7Ralpha:

Receptor chains for the cytokines Il-2 and Il-7

iPEC:

Immune peritoneal exudate cells

IFNR:

Type I interferon receptor

ISPL:

Immune spleen cells

i.v.:

Intravenous

i.p.:

Intraperitoneal

i.d.:

Intradermal

lacZ:

Gene coding for bacterial β-galactosidase

LTR:

Long terminal repeat DNA

mHA:

Minor histocompatibility antigen

Mls:

Minor lymphocyte stimulatory antigen

MHC:

Major histocompatibility complex

MMTV:

Mouse mammary tumor virus

MSC:

Mesenchymal stem cell

MTC:

Memory T cell

Mtv-7:

Gene coding for viral superantigen vSAG-7

NMR:

Nuclear magnetic resonance

NO:

Nitric oxide

NOD/SCID:

Non-obese-diabetes deficiency/severe combined immunodeficiency mouse strain

PEC:

Peritoneal exudate cells containing EMT

PME:

Phosphomonoesters

PT:

Primary tumor

SAG:

Superantigen

s.c.:

Subcutaneous

SDF-1:

Stromal-cell-derived factor 1 (CXCL12)

SMT:

Stem memory T cell

Sn:

Sialoadhesin

TAA:

Tumor-associated antigen

TIL:

Tumor-infiltrating lymphocyte

TCR:

Antigen-specific T-cell receptor

VCAM-1:

Vascular cell adhesion molecule 1

vSAG:

Viral superantigen

X-Gal:

Staining procedure to visualize β-gal expressing cells

References

  1. Wen FT, Thisted RA, Rowley DA, Schreiber H (2012) A systematic analysis of experimental immunotherapies on tumors differing in size and duration of growth. Oncoimmunology 1:172–178

    Article  PubMed Central  PubMed  Google Scholar 

  2. Schirrmacher V, Beckhove P, Krueger A et al (1995) Effective immune rejection of advanced metastasized cancer. Int J Oncol 6:505–521

    CAS  PubMed  Google Scholar 

  3. Schirrmacher V, Bosslet K, Shantz G, Clauer K, Huebsch D (1979) Tumor metastases and cell-mediated immunity in a model system in DBA/2 mice. IV. Antigenic differences between a metastasizing variant and the parental tumor line revealed by cytotoxic T lymphocytes. Int J Cancer 23:245–252

    Article  CAS  PubMed  Google Scholar 

  4. Krueger A, Schirrmacher V, von Hoegen P (1994) Scattered micrometastases visualized at the single-cell level: detection and re-isolation of lacZ-labeled metastasized lymphoma cells. Int J Cancer 58:275–284

    Article  Google Scholar 

  5. Bosslet K, Schirrmacher V (1982) High-frequency generation of new immunoresistant tumor variants during metastasis of a cloned murine tumor line (ESb). Int J Cancer 29:195–202

    Article  CAS  PubMed  Google Scholar 

  6. Schirrmacher V, Fogel M, Russmann E, Bosslet K, Altevogt P, Beck L (1982) Antigenic variation in cancer metastasis: immune escape versus immune control. Cancer Metastasis Rev 1:241–274

    Article  CAS  PubMed  Google Scholar 

  7. Schirrmacher V, von Hoegen P, Griesbach A, Schild HJ, Zangemeister-Wittke U (1991) Specific eradication of micrometastases by transfer of tumour-immune T cells from major-histocompatibility-complex congenic mice. Cancer Immun Immunoth 32:373–381

    Article  CAS  Google Scholar 

  8. Zangemeister-Wittke U, Schirrmacher V (1991) Transfer of long-lasting tumor immunity by immune T cells from MHC congenic mice: migration, survival and tumor-protectivity of cytotoxic donor cells. Biotherapy 3:319–329

    Article  CAS  PubMed  Google Scholar 

  9. Festenstein H (1976) The Mls system. Transplant Proc 8:339–342

    CAS  PubMed  Google Scholar 

  10. Winslow GM, Scherer MT, Kappler JW, Marrack P (1992) Detection and biochemical characterization of the mouse mammary tumor virus 7 superantigen (Mls-1a). Cell 71:719–730

    Article  CAS  PubMed  Google Scholar 

  11. Schirrmacher V, Griesbach A, Gehring M, Lehr B (1996) Genetic separation of GvL and GvH reactivity in new recombinant-inbred tumor-resistant mouse strains. Int J Oncol 8:1035–1043

    CAS  PubMed  Google Scholar 

  12. Schirrmacher V, Beutner U, Bucur M, Umansky V, Rocha M, von Hoegen P (1998) Loss of endogenous mouse mammary tumor virus superantigen increases tumor resistance. J Immunol 161:563–570

    CAS  PubMed  Google Scholar 

  13. Schirrmacher V, Müerköster S, Bucur M, Umansky V, Rocha M (2000) Breaking tolerance to a tumor-associated viral superantigen as a basis for graft-versus-leukemia reactivity. Int J Cancer 87:695–706

    Article  CAS  PubMed  Google Scholar 

  14. Fichtner KP, Schirrmacher V, Griesbach A, Hull WE (1996) Characterization of a murine lymphoma line by 31P-NMR spectroscopy: in vivo monitoring of the local anti-tumor effects of systemic immune cell transfer. Int J Cancer 66:484–495

    Article  CAS  PubMed  Google Scholar 

  15. Fichtner KP, Schirrmacher V, Griesbach A, Hull WE (1997) In vivo 1H-NMR microimaging with respiratory triggering for monitoring adoptive immunotherapy of metastatic mouse lymphoma. Magn Reson Med 38:440–455

    Article  CAS  PubMed  Google Scholar 

  16. Von Hoegen P, Altevogt P, Schirrmacher V (1987) New antigens presented on tumor cells can cause immune rejection without influencing the frequency of tumor-specific cytolytic T cells. Cell Immunol 109:338–348

    Article  Google Scholar 

  17. Müerköster S, Weigand MA, Choi C, Walczak H, Schirrmacher V, Umansky V (2002) Superantigen reactive vβ6 T cells induce perforin/granzyme B mediated caspase-independent apoptosis in tumor cells. Brit J Cancer 86:828–836

    Article  PubMed Central  PubMed  Google Scholar 

  18. Müerköster S, Rocha M, Crocker PR, Schirrmacher V, Umansky V (1999) Sialoadhesin-positive host macrophages play an essential role in graft-versus-leukemia reactivity in mice. Blood 93:4375–4386

    PubMed  Google Scholar 

  19. Müerköster S, Laman JD, Rocha M, Umansky V, Schirrmacher V (2000) Functional and in situ evidence for nitric oxide production driven by CD40-CD40L interactions in graft-versus-leukemia reactivity. Clin Cancer Res 6:1988–1996

    PubMed  Google Scholar 

  20. Rocha M, Krüger A, Van Rooijen N, Schirrmacher V, Umansky V (1995) Liver endothelial cells participate in T-cell-dependent host resistance to lymphoma metastasis by production of nitric oxide in vivo. Int J Cancer 63:405–411

    Article  CAS  PubMed  Google Scholar 

  21. Kordes C, Sawitza I, Götze S, Häussinger D (2013) Hepatic stellate cells support hematopoiesis and are liver-resident mesenchymal stem cells. Cell Physiol Biochem 31:290–304

    Article  CAS  PubMed  Google Scholar 

  22. Lee K, Hacker HJ, Umansky V, Schirrmacher V (1996) Changes in liver glycogen and lipid metabolism during transient graft.versus-host (GvH) and graft-versus-leukemia (GvL) reactivity. Int J Oncol 9:635–643

    CAS  PubMed  Google Scholar 

  23. Jones A, Friedrich K, Rohm M et al (2013) TSC22D4 is a molecular output of hepatic wasting metabolism. EMBO Mol Med 5:294–308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Schirrmacher V, Beckhove P, Choi C, Griesbach A, Mahnke Y (2005) Tumor-immune memory T cells from the bone marrow exert GvL without GvH reactivity in advanced metastasized cancer. Int J Oncol 27:1141–1149

    PubMed  Google Scholar 

  25. Tokoyada K, Hauser AE, Nakayama T, Radbruch A (2010) Organization of immunological memory by bone marrow stroma. Nat Rev Immunol 10(3):193–200

    Article  Google Scholar 

  26. Roozendaal R, Mebius RE (2011) Stromal cell-immune cell interaction. Ann Rev Immunol 29:23–43

    Article  CAS  Google Scholar 

  27. Cieri N, Camisa B, Cocchiarella F et al (2013) IL-7 and IL-15 instruct the generation of human memory stem T cells from naïve precursors. Blood 121:573–584

    Article  CAS  PubMed  Google Scholar 

  28. Feuerer M, Beckhove P, Bai L et al (2001) Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nat Med 7:452–458

    Article  CAS  PubMed  Google Scholar 

  29. Weninger W, Crowley MA, Manjunath N, von Andrian U (2001) Migratory properties of naïve, effector and memory CD8 + T cells. J Exp Med 194:953–966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Feuerer M, Beckhove P, Garbi N et al (2003) Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med 9:1151–1157

    Article  CAS  PubMed  Google Scholar 

  31. Mahnke Y, Schwendemann J, Beckhove P, Schirrmacher V (2005) Maintenance of long-term tumour-specific T-cell memory by residual dormant tumour cells. Immunology 115(3):325–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Dvorak HF (1986) Tumors: wounds that do not heal. N Engl J Med 315:1650–1689

    Article  CAS  PubMed  Google Scholar 

  33. Casucci M, Perna SK, Falcone L et al (2013) Graft-versus-leukemia effect of HLA-haploidentical central-memory T-cells expanded with leukemic APCs and modified with a suicide gene. Mol Ther 21:466–475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Slavin S, Ackerstein A, Or R, Shapira MY, Gesundheit B, Askenasy N, Morecki S (2010) Immunotherapy in high-risk chemotherapy-resistant patients with metastatic solid tumors and hematological malignancies using intentionally mismatched donor lymphocytes activated with rIl-2: a phase I study. Cancer Immunol Immunother 59:1511–1519

    Article  CAS  PubMed  Google Scholar 

  35. Schuetz F, Ehlert K, Ge Y et al (2009) Treatment of advanced metastasized breast cancer with bone-marrow derived tumour-reactive memory T cells: a pilot clinical study. Cancer Immunol Immunother 58:887–900

    Article  PubMed  Google Scholar 

  36. Domschke C, Ge Y, Bernhard I et al (2013) Long-term survival after adoptive bone marrow T cell therapy of advanced metastasized breast cancer: follow-up analysis of a clinical pilot trial. Cancer Immunol Immunother 62:1053–1060

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The author declares that no competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Schirrmacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schirrmacher, V. Complete remission of cancer in late-stage disease by radiation and transfer of allogeneic MHC-matched immune T cells: lessons from GvL studies in animals. Cancer Immunol Immunother 63, 535–543 (2014). https://doi.org/10.1007/s00262-014-1530-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1530-2

Keywords

Navigation