Skip to main content

Advertisement

Log in

Camouflage and sabotage: tumor escape from the immune system

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The field of tumor immunology has made great progress in understanding tumor immune interactions. As a consequence a number of immuno-therapeutic approaches have been successfully introduced into the clinic and a large number of promising therapeutic strategies are investigated in ongoing clinical trials. Evaluation of anti-tumor immunity in such trials as well as in animal models has shown that tumor escape from immune recognition and tumor-mediated suppression of anti-tumor immunity can pose a significant obstacle to successful cancer therapy. Here, we review mechanisms of tumor immune escape and immune-subversion with a focus on the research interests in our laboratory: loss of MHC class I on tumor cells, increased oxidative stress, recruitment of myeloid-derived suppressor cells, and regulatory T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Moller G, Moller E (1962) Studies in vitro and in vivo of the cytotoxic and enhancing effect of humoral isoantibodies. Ann NY Acad Sci 99:504–530

    Article  PubMed  CAS  Google Scholar 

  2. Baselga J, Swain SM (2009) Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nature reviews 9(7):463–475

    PubMed  CAS  Google Scholar 

  3. Eggermont AM, Testori A, Maio M, Robert C (2010) Anti-CTLA-4 antibody adjuvant therapy in melanoma. Semin Oncol 37(5):455–459

    Article  PubMed  CAS  Google Scholar 

  4. Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P (2006) Human T cell responses against melanoma. Annu Rev Immunol 24:175–208

    Article  PubMed  CAS  Google Scholar 

  5. Marchand M, van Baren N, Weynants P, Brichard V, Dreno B, Tessier MH, Rankin E, Parmiani G, Arienti F, Humblet Y, Bourlond A, Vanwijck R, Lienard D, Beauduin M, Dietrich PY, Russo V, Kerger J, Masucci G, Jager E, De Greve J, Atzpodien J, Brasseur F, Coulie PG, van der Bruggen P, Boon T (1999) Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer 80(2):219–230

    Article  PubMed  CAS  Google Scholar 

  6. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915

    Article  PubMed  CAS  Google Scholar 

  7. Seliger B (2008) Molecular mechanisms of MHC class I abnormalities and APM components in human tumors. Cancer Immunol Immunother 57(11):1719–1726

    Article  PubMed  CAS  Google Scholar 

  8. Carretero R, Romero JM, Ruiz-Cabello F, Maleno I, Rodriguez F, Camacho FM, Real LM, Garrido F, Cabrera T (2008) Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics 60(8):439–447

    Article  PubMed  CAS  Google Scholar 

  9. Vitale M, Rezzani R, Rodella L, Zauli G, Grigolato P, Cadei M, Hicklin DJ, Ferrone S (1998) HLA class I antigen and transporter associated with antigen processing (TAP1 and TAP2) down-regulation in high-grade primary breast carcinoma lesions. Cancer Res 58(4):737–742

    PubMed  CAS  Google Scholar 

  10. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM (2007) Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370(9581):59–67

    Article  PubMed  Google Scholar 

  11. Cheng NC, Beitsma M, Chan A, Op den Camp I, Westerveld A, Pronk J, Versteeg R (1996) Lack of class I HLA expression in neuroblastoma is associated with high N-myc expression and hypomethylation due to loss of the MEMO-1 locus. Oncogene 13(8):1737–1744

    PubMed  CAS  Google Scholar 

  12. Liu X, Ge R, Ricciardi RP (1996) Evidence for the involvement of a nuclear NF-kappa B inhibitor in global down-regulation of the major histocompatibility complex class I enhancer in adenovirus type 12-transformed cells. Mol Cell Biol 16(1):398–404

    PubMed  CAS  Google Scholar 

  13. Georgopoulos NT, Proffitt JL, Blair GE (2000) Transcriptional regulation of the major histocompatibility complex (MHC) class I heavy chain, TAP1 and LMP2 genes by the human papillomavirus (HPV) type 6b, 16 and 18 E7 oncoproteins. Oncogene 19(42):4930–4935. doi:10.1038/sj.onc.1203860

    Article  PubMed  CAS  Google Scholar 

  14. Atkins D, Breuckmann A, Schmahl GE, Binner P, Ferrone S, Krummenauer F, Storkel S, Seliger B (2004) MHC class I antigen processing pathway defects, ras mutations and disease stage in colorectal carcinoma. Int J Cancer 109(2):265–273. doi:10.1002/ijc.11681

    Article  PubMed  CAS  Google Scholar 

  15. Peoples GE, Goedegebuure PS, Smith R, Linehan DC, Yoshino I, Eberlein TJ (1995) Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc Natl Acad Sci U S A 92(2):432–436

    Article  PubMed  CAS  Google Scholar 

  16. Rongcun Y, Salazar-Onfray F, Charo J, Malmberg KJ, Evrin K, Maes H, Kono K, Hising C, Petersson M, Larsson O, Lan L, Appella E, Sette A, Celis E, Kiessling R (1999) Identification of new HER2/neu-derived peptide epitopes that can elicit specific CTL against autologous and allogeneic carcinomas and melanomas. J Immunol 163(2):1037–1044

    PubMed  CAS  Google Scholar 

  17. Anderson BW, Peoples GE, Murray JL, Gillogly MA, Gershenson DM, Ioannides CG (2000) Peptide priming of cytolytic activity to HER-2 epitope 369–377 in healthy individuals. Clin Cancer Res 6(11):4192–4200

    PubMed  CAS  Google Scholar 

  18. Azuma K, Shichijo S, Shomura H, Matsueda S, Fujii T, Itoh K (2004) Identification of HER2/neu-derived peptides capable of inducing both cellular and humoral immune responses in HLA-A24 positive breast cancer patients. Breast Cancer Res Treat 86(1):19–29. doi:10.1023/B:BREA.0000032920.95410.63

    Article  PubMed  CAS  Google Scholar 

  19. Choudhury A, Charo J, Parapuram SK, Hunt RC, Hunt DM, Seliger B, Kiessling R (2004) Small interfering RNA (siRNA) inhibits the expression of the Her2/neu gene, upregulates HLA class I and induces apoptosis of Her2/neu positive tumor cell lines. Int J Cancer 108(1):71–77. doi:10.1002/ijc.11497

    Article  PubMed  CAS  Google Scholar 

  20. Vertuani S, Triulzi C, Roos AK, Charo J, Norell H, Lemonnier F, Pisa P, Seliger B, Kiessling R (2009) HER-2/neu mediated down-regulation of MHC class I antigen processing prevents CTL-mediated tumor recognition upon DNA vaccination in HLA-A2 transgenic mice. Cancer Immunol Immunother 58(5):653–664. doi:10.1007/s00262-008-0587-1

    Article  PubMed  CAS  Google Scholar 

  21. Herrmann F, Lehr HA, Drexler I, Sutter G, Hengstler J, Wollscheid U, Seliger B (2004) HER-2/neu-mediated regulation of components of the MHC class I antigen-processing pathway. Cancer Res 64(1):215–220

    Article  PubMed  CAS  Google Scholar 

  22. Mimura K, Ando T, Poschke I, Mougiakakos D, Johansson CC, Ichikawa J, Okita R, Nishimura MI, Handke D, Krug N, Choudhury A, Seliger B, Kiessling R (2011) T cell recognition of HLA-A2 restricted tumor antigens is impaired by the oncogene HER2. Int J Cancer 128(2):390–401

    Article  PubMed  CAS  Google Scholar 

  23. Lustgarten J, Theobald M, Labadie C, LaFace D, Peterson P, Disis ML, Cheever MA, Sherman LA (1997) Identification of Her-2/Neu CTL epitopes using double transgenic mice expressing HLA-A2.1 and human CD.8. Hum Immunol 52(2):109–118

    Article  PubMed  CAS  Google Scholar 

  24. Scardino A, Alimandi M, Correale P, Smith SG, Bei R, Firat H, Cusi MG, Faure O, Graf-Dubois S, Cencioni G, Marrocco J, Chouaib S, Lemonnier FA, Jackson AM, Kosmatopoulos K (2007) A polyepitope DNA vaccine targeted to Her-2/ErbB-2 elicits a broad range of human and murine CTL effectors to protect against tumor challenge. Cancer Res 67(14):7028–7036

    Article  PubMed  CAS  Google Scholar 

  25. Knutson KL, Schiffman K, Cheever MA, Disis ML (2002) Immunization of cancer patients with a HER-2/neu, HLA-A2 peptide, p369–377, results in short-lived peptide-specific immunity. Clin Cancer Res 8(5):1014–1018

    PubMed  CAS  Google Scholar 

  26. Mittendorf EA, Holmes JP, Ponniah S, Peoples GE (2008) The E75 HER2/neu peptide vaccine. Cancer Immunol Immunother 57(10):1511–1521

    Article  PubMed  CAS  Google Scholar 

  27. Lindencrona JA, Preiss S, Kammertoens T, Schuler T, Piechocki M, Wei WZ, Seliger B, Blankenstein T, Kiessling R (2004) CD4+ T cell-mediated HER-2/neu-specific tumor rejection in the absence of B cells. Int J Cancer 109(2):259–264

    Article  PubMed  CAS  Google Scholar 

  28. Pilon SA, Piechocki MP, Wei WZ (2001) Vaccination with cytoplasmic ErbB-2 DNA protects mice from mammary tumor growth without anti-ErbB-2 antibody. J Immunol 167(6):3201–3206

    PubMed  CAS  Google Scholar 

  29. Norell H, Poschke I, Charo J, Wei WZ, Erskine C, Piechocki MP, Knutson KL, Bergh J, Lidbrink E, Kiessling R (2010) Vaccination with a plasmid DNA encoding HER-2/neu together with low doses of GM-CSF and IL-2 in patients with metastatic breast carcinoma: a pilot clinical trial. J Transl Med 8:53. doi:10.1186/1479-5876-8-53

    Article  PubMed  CAS  Google Scholar 

  30. Piechocki MP, Ho YS, Pilon S, Wei WZ (2003) Human ErbB-2 (Her-2) transgenic mice: a model system for testing Her-2 based vaccines. J Immunol 171(11):5787–5794

    PubMed  CAS  Google Scholar 

  31. Park JM, Terabe M, Sakai Y, Munasinghe J, Forni G, Morris JC, Berzofsky JA (2005) Early role of CD4+ Th1 cells and antibodies in HER-2 adenovirus vaccine protection against autochthonous mammary carcinomas. J Immunol 174(7):4228–4236

    PubMed  CAS  Google Scholar 

  32. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6(4):443–446

    Article  PubMed  CAS  Google Scholar 

  33. Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, Missale G, Laccabue D, Zerbini A, Camisa R, Bisagni G, Neri TM, Ardizzoni A (2008) Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol 26(11):1789–1796

    Article  PubMed  CAS  Google Scholar 

  34. Varchetta S, Gibelli N, Oliviero B, Nardini E, Gennari R, Gatti G, Silva LS, Villani L, Tagliabue E, Menard S, Costa A, Fagnoni FF (2007) Elements related to heterogeneity of antibody-dependent cell cytotoxicity in patients under trastuzumab therapy for primary operable breast cancer overexpressing Her2. Cancer Res 67(24):11991–11999

    Article  PubMed  CAS  Google Scholar 

  35. Park S, Jiang Z, Mortenson ED, Deng L, Radkevich-Brown O, Yang X, Sattar H, Wang Y, Brown NK, Greene M, Liu Y, Tang J, Wang S, Fu YX (2010) The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18(2):160–170

    Article  PubMed  CAS  Google Scholar 

  36. Radkevich-Brown O, Jacob J, Kershaw M, Wei WZ (2009) Genetic regulation of the response to Her-2 DNA vaccination in human Her-2 transgenic mice. Cancer Res 69(1):212–218

    Article  PubMed  CAS  Google Scholar 

  37. Rolla S, Nicolo C, Malinarich S, Orsini M, Forni G, Cavallo F, Ria F (2006) Distinct and non-overlapping T cell receptor repertoires expanded by DNA vaccination in wild-type and HER-2 transgenic BALB/c mice. J Immunol 177(11):7626–7633

    PubMed  CAS  Google Scholar 

  38. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. doi:10.1038/nri2506

    Article  PubMed  CAS  Google Scholar 

  39. Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borrello I, Zanovello P, Bicciato S, Bronte V (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 116(10):2777–2790. doi:10.1172/JCI28828

    Article  PubMed  CAS  Google Scholar 

  40. Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181(7):4666–4675

    PubMed  CAS  Google Scholar 

  41. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T, Roth J, Gabrilovich DI (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205(10):2235–2249. doi:10.1084/jem.20080132

    Article  PubMed  CAS  Google Scholar 

  42. Young MR, Lathers DM (1999) Myeloid progenitor cells mediate immune suppression in patients with head and neck cancers. Int J Immunopharmacol 21(4):241–252

    Article  PubMed  CAS  Google Scholar 

  43. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166(1):678–689

    PubMed  CAS  Google Scholar 

  44. Vieweg J, Su Z, Dahm P, Kusmartsev S (2007) Reversal of tumor-mediated immunosuppression. Clin Cancer Res 13(2 Pt 2):727s–732s. doi:10.1158/1078-0432.CCR-06-1924

    Article  PubMed  CAS  Google Scholar 

  45. Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 61(12):4756–4760

    PubMed  CAS  Google Scholar 

  46. Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O’Neill A, Mier J, Ochoa AC (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65(8):3044–3048. doi:10.1158/0008-5472.CAN-04-4505

    PubMed  CAS  Google Scholar 

  47. Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25(18):2546–2553. doi:10.1200/JCO.2006.08.5829

    Article  PubMed  CAS  Google Scholar 

  48. Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, Greten TF, Korangy F (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135(1):234–243. doi:10.1053/j.gastro.2008.03.020

    Article  PubMed  CAS  Google Scholar 

  49. Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R (2010) Immature immunosuppressive CD14 + HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70(11):4335–4345. doi:10.1158/0008-5472.CAN-09-3767

    Article  PubMed  CAS  Google Scholar 

  50. Salvadori S, Martinelli G, Zier K (2000) Resection of solid tumors reverses T cell defects and restores protective immunity. J Immunol 164(4):2214–2220

    PubMed  CAS  Google Scholar 

  51. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58(1):49–59. doi:10.1007/s00262-008-0523-4

    Article  PubMed  CAS  Google Scholar 

  52. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182(8):4499–4506. doi:10.4049/jimmunol.0802740

    Article  PubMed  CAS  Google Scholar 

  53. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69(4):1553–1560. doi:10.1158/0008-5472.CAN-08-1921

    Article  PubMed  CAS  Google Scholar 

  54. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70(1):68–77. doi:10.1158/0008-5472.CAN-09-2587

    Article  PubMed  CAS  Google Scholar 

  55. Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X, Dietz AB (2010) Immunosuppressive CD14+ HLA-DRlow/- monocytes in prostate cancer. Prostate 70(4):443–455. doi:10.1002/pros.21078

    PubMed  CAS  Google Scholar 

  56. Li H, Han Y, Guo Q, Zhang M, Cao X (2009) Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 182(1):240–249

    PubMed  CAS  Google Scholar 

  57. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell 13(1):23–35. doi:10.1016/j.ccr.2007.12.004

    Article  PubMed  CAS  Google Scholar 

  58. Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S (2009) Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4 + and CD8 + T cells. J Immunol 183(2):937–944. doi:10.4049/jimmunol.0804253

    Article  PubMed  CAS  Google Scholar 

  59. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH (2006) Gr-1+ CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66(2):1123–1131. doi:10.1158/0008-5472.CAN-05-1299

    Article  PubMed  CAS  Google Scholar 

  60. Pan PY, Ma G, Weber KJ, Ozao-Choy J, Wang G, Yin B, Divino CM, Chen SH (2010) Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res 70(1):99–108. doi:10.1158/0008-5472.CAN-09-1882

    Article  PubMed  CAS  Google Scholar 

  61. Yang R, Cai Z, Zhang Y, WHt Yutzy, Roby KF, Roden RB (2006) CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+ CD11b+ myeloid cells. Cancer Res 66(13):6807–6815. doi:10.1158/0008-5472.CAN-05-3755

    Article  PubMed  CAS  Google Scholar 

  62. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172(2):989–999

    PubMed  CAS  Google Scholar 

  63. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182(9):5693–5701. doi:10.4049/jimmunol.0900092

    Article  PubMed  CAS  Google Scholar 

  64. Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, Lehner F, Manns MP, Greten TF, Korangy F (2009) Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 50(3):799–807. doi:10.1002/hep.23054

    Article  PubMed  CAS  Google Scholar 

  65. Liu C, Yu S, Kappes J, Wang J, Grizzle WE, Zinn KR, Zhang HG (2007) Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood 109(10):4336–4342. doi:10.1182/blood-2006-09-046201

    Article  PubMed  CAS  Google Scholar 

  66. Nausch N, Galani IE, Schlecker E, Cerwenka A (2008) Mononuclear myeloid-derived “suppressor” cells express RAE-1 and activate natural killer cells. Blood 112(10):4080–4089. doi:10.1182/blood-2008-03-143776

    Article  PubMed  CAS  Google Scholar 

  67. Mantovani A, Sica A, Allavena P, Garlanda C, Locati M (2009) Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 70(5):325–330. doi:10.1016/j.humimm.2009.02.008

    Article  PubMed  CAS  Google Scholar 

  68. Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, Cho HI, Celis E, Quiceno DG, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2010) HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207(11):2439–2453. doi:10.1084/jem.20100587

    Article  PubMed  CAS  Google Scholar 

  69. Kono K, Salazar-Onfray F, Petersson M, Hansson J, Masucci G, Wasserman K, Nakazawa T, Anderson P, Kiessling R (1996) Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing zeta molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. Eur J Immunol 26(6):1308–1313. doi:10.1002/eji.1830260620

    Article  PubMed  CAS  Google Scholar 

  70. Finke JH, Zea AH, Stanley J, Longo DL, Mizoguchi H, Tubbs RR, Wiltrout RH, O’Shea JJ, Kudoh S, Klein E et al (1993) Loss of T-cell receptor zeta chain and p56lck in T-cells infiltrating human renal cell carcinoma. Cancer Res 53(23):5613–5616

    PubMed  CAS  Google Scholar 

  71. Nakagomi H, Petersson M, Magnusson I, Juhlin C, Matsuda M, Mellstedt H, Taupin JL, Vivier E, Anderson P, Kiessling R (1993) Decreased expression of the signal-transducing zeta chains in tumor-infiltrating T-cells and NK cells of patients with colorectal carcinoma. Cancer Res 53(23):5610–5612

    PubMed  CAS  Google Scholar 

  72. Mizoguchi H, O’Shea JJ, Longo DL, Loeffler CM, McVicar DW, Ochoa AC (1992) Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science 258(5089):1795–1798

    Article  PubMed  CAS  Google Scholar 

  73. Matsuda M, Petersson M, Lenkei R, Taupin JL, Magnusson I, Mellstedt H, Anderson P, Kiessling R (1995) Alterations in the signal-transducing molecules of T cells and NK cells in colorectal tumor-infiltrating, gut mucosal and peripheral lymphocytes: correlation with the stage of the disease. Int J Cancer 61(6):765–772

    Article  PubMed  CAS  Google Scholar 

  74. Kono K, Ressing ME, Brandt RM, Melief CJ, Potkul RK, Andersson B, Petersson M, Kast WM, Kiessling R (1996) Decreased expression of signal-transducing zeta chain in peripheral T cells and natural killer cells in patients with cervical cancer. Clin Cancer Res 2(11):1825–1828

    PubMed  CAS  Google Scholar 

  75. Condamine T, Gabrilovich DI (2011) Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 32(1):19–25. doi:10.1016/j.it.2010.10.002

    Article  PubMed  CAS  Google Scholar 

  76. Nefedova Y, Nagaraj S, Rosenbauer A, Muro-Cacho C, Sebti SM, Gabrilovich DI (2005) Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res 65(20):9525–9535. doi:10.1158/0008-5472.CAN-05-0529

    Article  PubMed  CAS  Google Scholar 

  77. Gershon RK, Kondo K (1970) Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18(5):723–737

    PubMed  CAS  Google Scholar 

  78. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151–1164

    PubMed  CAS  Google Scholar 

  79. Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC (2010) Regulatory T cells in cancer. Adv Cancer Res 107:57–117. doi:10.1016/S0065-230X(10)07003-X

    Article  PubMed  CAS  Google Scholar 

  80. Sakaguchi S, Sakaguchi N (2005) Regulatory T cells in immunologic self-tolerance and autoimmune disease. Int Rev Immunol 24(3–4):211–226. doi:10.1080/08830180590934976

    Article  PubMed  CAS  Google Scholar 

  81. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6(4):295–307. doi:10.1038/nri1806

    Article  PubMed  CAS  Google Scholar 

  82. Di Giacomo AM, Biagioli M, Maio M (2010) The emerging toxicity profiles of anti-CTLA-4 antibodies across clinical indications. Semin Oncol 37(5):499–507. doi:10.1053/j.seminoncol.2010.09.007

    Article  PubMed  CAS  Google Scholar 

  83. Shevach EM (2006) From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 25(2):195–201. doi:10.1016/j.immuni.2006.08.003

    Article  PubMed  CAS  Google Scholar 

  84. Serafini P, Mgebroff S, Noonan K, Borrello I (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68(13):5439–5449. doi:10.1158/0008-5472.CAN-07-6621

    Article  PubMed  CAS  Google Scholar 

  85. Miyara M, Sakaguchi S (2007) Natural regulatory T cells: mechanisms of suppression. Trends Mol Med 13(3):108–116. doi:10.1016/j.molmed.2007.01.003

    Article  PubMed  CAS  Google Scholar 

  86. Wilhelm K, Ganesan J, Muller T, Durr C, Grimm M, Beilhack A, Krempl CD, Sorichter S, Gerlach UV, Juttner E, Zerweck A, Gartner F, Pellegatti P, Di Virgilio F, Ferrari D, Kambham N, Fisch P, Finke J, Idzko M, Zeiser R (2010) Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R. Nat Med 16(12):1434–1438. doi:10.1038/nm.2242

    Article  PubMed  CAS  Google Scholar 

  87. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204(6):1257–1265. doi:10.1084/jem.20062512

    Article  PubMed  CAS  Google Scholar 

  88. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ (2007) CD4+ CD25+ Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 8(12):1353–1362. doi:10.1038/ni1536

    Article  PubMed  CAS  Google Scholar 

  89. Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401(1):1–11. doi:10.1042/BJ20061131

    Article  PubMed  CAS  Google Scholar 

  90. Takahashi A, Hanson MG, Norell HR, Havelka AM, Kono K, Malmberg KJ, Kiessling RV (2005) Preferential cell death of CD8+ effector memory (CCR7-CD45RA-) T cells by hydrogen peroxide-induced oxidative stress. J Immunol 174(10):6080–6087

    PubMed  CAS  Google Scholar 

  91. Malmberg KJ, Arulampalam V, Ichihara F, Petersson M, Seki K, Andersson T, Lenkei R, Masucci G, Pettersson S, Kiessling R (2001) Inhibition of activated/memory (CD45RO(+)) T cells by oxidative stress associated with block of NF-kappaB activation. J Immunol 167(5):2595–2601

    PubMed  CAS  Google Scholar 

  92. Harlin H, Hanson M, Johansson CC, Sakurai D, Poschke I, Norell H, Malmberg KJ, Kiessling R (2007) The CD16- CD56(bright) NK cell subset is resistant to reactive oxygen species produced by activated granulocytes and has higher antioxidative capacity than the CD16 + CD56(dim) subset. J Immunol 179(7):4513–4519

    PubMed  CAS  Google Scholar 

  93. Mehrotra S, Mougiakakos D, Johansson CC, Voelkel-Johnson C, Kiessling R (2009) Oxidative stress and lymphocyte persistence: implications in immunotherapy. Adv Cancer Res 102:197–227. doi:10.1016/S0065-230X(09)02006-5

    Article  PubMed  CAS  Google Scholar 

  94. Mougiakakos D, Johansson CC, Kiessling R (2009) Naturally occurring regulatory T cells show reduced sensitivity toward oxidative stress-induced cell death. Blood 113(15):3542–3545. doi:10.1182/blood-2008-09-181040

    Article  PubMed  CAS  Google Scholar 

  95. Mougiakakos D, Johansson CC, Jitschin R, Bottcher M, Kiessling R (2011) Increased thioredoxin-1 production in human naturally occurring regulatory T cells confers enhanced tolerance to oxidative stress. Blood 117(3):857–861. doi:10.1182/blood-2010-09-307041

    Article  PubMed  CAS  Google Scholar 

  96. Thoren FB, Romero AI, Hermodsson S, Hellstrand K (2007) The CD16-/CD56bright subset of NK cells is resistant to oxidant-induced cell death. J Immunol 179(2):781–785

    PubMed  CAS  Google Scholar 

  97. Thoren FB, Betten A, Romero AI, Hellstrand K (2007) Cutting edge: Antioxidative properties of myeloid dendritic cells: protection of T cells and NK cells from oxygen radical-induced inactivation and apoptosis. J Immunol 179(1):21–25

    PubMed  CAS  Google Scholar 

  98. Efimova O, Szankasi P, Szankasi P, Kelley TW (2011) Ncf1 (p47phox) is essential for direct regulatory T cell mediated suppression of CD4+ effector T cells. PLoS One 6(1):e16013. doi:10.1371/journal.pone.0016013

    Article  PubMed  CAS  Google Scholar 

  99. Yan Z, Garg SK, Banerjee R (2010) Regulatory T cells interfere with glutathione metabolism in dendritic cells and T cells. J Biol Chem 285(53):41525–41532. doi:10.1074/jbc.M110.189944

    Article  PubMed  CAS  Google Scholar 

  100. Yan Z, Garg SK, Kipnis J, Banerjee R (2009) Extracellular redox modulation by regulatory T cells. Nat Chem Biol 5(10):721–723. doi:10.1038/nchembio.212

    Article  PubMed  CAS  Google Scholar 

  101. Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H (2005) Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105(7):2862–2868. doi:10.1182/blood-2004-06-2410

    Article  PubMed  CAS  Google Scholar 

  102. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Filie AC, Abati A, Rosenberg SA (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23(10):2346–2357. doi:10.1200/JCO.2005.00.240

    Article  PubMed  CAS  Google Scholar 

  103. Mahnke K, Schonfeld K, Fondel S, Ring S, Karakhanova S, Wiedemeyer K, Bedke T, Johnson TS, Storn V, Schallenberg S, Enk AH (2007) Depletion of CD4+ CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int J Cancer 120(12):2723–2733. doi:10.1002/ijc.22617

    Article  PubMed  CAS  Google Scholar 

  104. Rech AJ, Vonderheide RH (2009) Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann N Y Acad Sci 1174:99–106. doi:10.1111/j.1749-6632.2009.04939.x

    Article  PubMed  CAS  Google Scholar 

  105. Sarnaik AA, Yu B, Yu D, Morelli DR, Hall MS, Bogle D, Yan L, Targan SR, Snively J, Nichol G, Yellin M, Weber JS (2010) Extended dose ipilimumab with a peptide vaccine: immune correlates associated with clinical benefit in patients with resected high-risk stage IIIc/IV melanoma. Clin Cancer Res. doi:10.1158/1078-0432.CCR-10-2463

  106. Hoos A, Ibrahim R, Korman A, Abdallah K, Berman D, Shahabi V, Chin K, Canetta R, Humphrey R (2010) Development of ipilimumab: contribution to a new paradigm for cancer immunotherapy. Semin Oncol 37(5):533–546. doi:10.1053/j.seminoncol.2010.09.015

    Article  PubMed  CAS  Google Scholar 

  107. Wolchok JD, Yang AS, Weber JS (2010) Immune regulatory antibodies: are they the next advance? Cancer J 16(4):311–317. doi:10.1097/PPO.0b013e3181eb3381

    Article  PubMed  CAS  Google Scholar 

  108. Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, Lush RM, Antonia S, Gabrilovich DI (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66(18):9299–9307. doi:10.1158/0008-5472.CAN-06-1690

    Article  PubMed  CAS  Google Scholar 

  109. Kusmartsev S, Cheng F, Yu B, Nefedova Y, Sotomayor E, Lush R, Gabrilovich D (2003) All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res 63(15):4441–4449

    PubMed  CAS  Google Scholar 

  110. Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kubler H, Yancey D, Dahm P, Vieweg J (2008) Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res 14(24):8270–8278. doi:10.1158/1078-0432.CCR-08-0165

    Article  PubMed  CAS  Google Scholar 

  111. Lathers DM, Clark JI, Achille NJ, Young MR (2004) Phase 1B study to improve immune responses in head and neck cancer patients using escalating doses of 25-hydroxyvitamin D3. Cancer Immunol Immunother 53(5):422–430. doi:10.1007/s00262-003-0459-7

    Article  PubMed  CAS  Google Scholar 

  112. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1 +/CD11b + myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11(18):6713–6721. doi:10.1158/1078-0432.CCR-05-0883

    Article  PubMed  CAS  Google Scholar 

  113. Ko HJ, Kim YJ, Kim YS, Chang WS, Ko SY, Chang SY, Sakaguchi S, Kang CY (2007) A combination of chemoimmunotherapies can efficiently break self-tolerance and induce antitumor immunity in a tolerogenic murine tumor model. Cancer Res 67(15):7477–7486. doi:10.1158/0008-5472.CAN-06-4639

    Article  PubMed  CAS  Google Scholar 

  114. Kusmartsev S, Eruslanov E, Kubler H, Tseng T, Sakai Y, Su Z, Kaliberov S, Heiser A, Rosser C, Dahm P, Siemann D, Vieweg J (2008) Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. J Immunol 181(1):346–353

    PubMed  CAS  Google Scholar 

  115. Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M, Schwartz M, Divino CM, Pan PY, Chen SH (2009) The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res 69(6):2514–2522. doi:10.1158/0008-5472.CAN-08-4709

    Article  PubMed  CAS  Google Scholar 

  116. Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15(6):2148–2157. doi:10.1158/1078-0432.CCR-08-1332

    Article  PubMed  CAS  Google Scholar 

  117. Fricke I, Mirza N, Dupont J, Lockhart C, Jackson A, Lee JH, Sosman JA, Gabrilovich DI (2007) Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clin Cancer Res 13(16):4840–4848. doi:10.1158/1078-0432.CCR-07-0409

    Article  PubMed  CAS  Google Scholar 

  118. Talmadge JE, Hood KC, Zobel LC, Shafer LR, Coles M, Toth B (2007) Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. Int Immunopharmacol 7(2):140–151. doi:10.1016/j.intimp.2006.09.021

    Article  PubMed  CAS  Google Scholar 

  119. Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V, Borrello I (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203(12):2691–2702. doi:10.1084/jem.20061104

    Article  PubMed  CAS  Google Scholar 

  120. De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P, Melani C, Guiducci C, Colombo MP, Iezzi M, Musiani P, Zanovello P, Bronte V (2005) Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci U S A 102(11):4185–4190. doi:10.1073/pnas.0409783102

    Article  PubMed  CAS  Google Scholar 

  121. Nagaraj S, Youn JI, Weber H, Iclozan C, Lu L, Cotter MJ, Meyer C, Becerra CR, Fishman M, Antonia S, Sporn MB, Liby KT, Rawal B, Lee JH, Gabrilovich DI (2010) Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res 16(6):1812–1823. doi:10.1158/1078-0432.CCR-09-3272

    Article  PubMed  CAS  Google Scholar 

  122. Malmberg KJ, Lenkei R, Petersson M, Ohlum T, Ichihara F, Glimelius B, Frodin JE, Masucci G, Kiessling R (2002) A short-term dietary supplementation of high doses of vitamin E increases T helper 1 cytokine production in patients with advanced colorectal cancer. Clin Cancer Res 8(6):1772–1778

    PubMed  CAS  Google Scholar 

  123. Hanson MG, Ozenci V, Carlsten MC, Glimelius BL, Frodin JE, Masucci G, Malmberg KJ, Kiessling RV (2007) A short-term dietary supplementation with high doses of vitamin E increases NK cell cytolytic activity in advanced colorectal cancer patients. Cancer Immunol Immunother 56(7):973–984. doi:10.1007/s00262-006-0261-4

    Article  PubMed  CAS  Google Scholar 

  124. Lladser A, Mougiakakos D, Tufvesson H, Ligtenberg MA, Quest AF, Kiessling R, Ljungberg K (2010) DAI (DLM-1/ZBP1) as a Genetic Adjuvant for DNA Vaccines That Promotes Effective Antitumor CTL Immunity. Mol Ther. doi: 10.1038/mt.2010.268

  125. Ando T, Mimura K, Johansson CC, Hanson MG, Mougiakakos D, Larsson C, Martins da Palma T, Sakurai D, Norell H, Li M, Nishimura MI, Kiessling R (2008) Transduction with the antioxidant enzyme catalase protects human T cells against oxidative stress. J Immunol 181(12):8382–8390

    PubMed  CAS  Google Scholar 

  126. Garrido F, Cabrera T, Aptsiauri N (2010) “Hard” and “soft” lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy. Int J Cancer 127(2):249–256

    PubMed  CAS  Google Scholar 

  127. Benavides LC, Gates JD, Carmichael MG, Patil R, Holmes JP, Hueman MT, Mittendorf EA, Craig D, Stojadinovic A, Ponniah S, Peoples GE (2009) The impact of HER2/neu expression level on response to the E75 vaccine: from U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clin Cancer Res 15(8):2895–2904

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Kiessling’s research group is supported by grants from the Swedish Cancer Society, the Swedish Medical Research Council, the Cancer Society of Stockholm, the European Union (Grants “EUCAAD” and “DC-THERA”), the Karolinska Institutet, Lars-Hiertas Memorial Foundation and an “ALF-Project” grant from the Stockholm City Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Poschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poschke, I., Mougiakakos, D. & Kiessling, R. Camouflage and sabotage: tumor escape from the immune system. Cancer Immunol Immunother 60, 1161–1171 (2011). https://doi.org/10.1007/s00262-011-1012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1012-8

Keywords

Navigation