Skip to main content

Advertisement

Log in

Treatment of advanced metastasized breast cancer with bone marrow-derived tumour-reactive memory T cells: a pilot clinical study

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Breast cancer patients frequently harbour tumour-reactive memory T cells in their bone marrow (BM) but not in the blood. After reactivation ex-vivo these cells rejected autologous breast tumours in xenotransplanted mice demonstrating therapeutic potential upon reactivation and mobilization into the blood. We conducted a clinical pilot study on metastasized breast cancer patients to investigate if ex-vivo reactivation of tumour-reactive BM memory T cells and their adoptive transfer is feasible and increases the frequencies of tumour-reactive T cells in the blood.

Methods

The study protocol involved one transfusion of T cells which were reactivated in vitro with autologous dendritic cells pulsed with lysate of MCF7 breast cancer cells as source of tumour antigens. Immunomonitoring included characterization of T cell activation in vitro and of tumour-specific T cells in the blood by interferon (IFN)-γ ELISPOT assay, HLA-tetramers and antigen-induced interleukin (IL)-4 secretion.

Results

Twelve patients with pre-existing tumour-reactive BM memory T cells were included into the study. In all cases, the treatment was feasible and well tolerated. Six patients (responders) showed by ELISPOT assay de-novo tumour antigen-specific, IFN-γ-secreting T cells in the blood after 7 days. In contrast, non responders showed in the blood tumour antigen-induced IL-4 responses. All responders received more than 6.5 × 103 tumour-reactive T cells. In contrast, all non responders received lower numbers of tumour antigen-reactive T cells. This was associated with reduced activation of memory T cells in activation cultures, increased amounts of CD4+ CD25high regulatory T cells in the BM and increased tumour antigen-dependent IL-10 secretion. The latter was prevented by preceding depletion of regulatory T cells suggesting that regulatory T cells in the BM can inhibit reactivation of tumour-specific T cells.

Conclusion

Taken together, adoptive transfer of ex-vivo re-stimulated tumour-reactive memory T cells from BM of metastasized breast cancer patients can induce the presence of tumour antigen-reactive type-1 T cells in the peripheral blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cote RJ, Rosen PP, Lesser ML, Old LJ, Osborne MP (1991) Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol 9:1749–1756

    PubMed  CAS  Google Scholar 

  2. Rosenberg SA (2004) Shedding light on immunotherapy for cancer. N Engl J Med 350:1461–1463

    Article  PubMed  CAS  Google Scholar 

  3. Cavanagh LL, Bonasio R, Mazo IB, Halin C, Cheng G, van der Velden AWM, Cariappa A, Chase C, Russell P, Starnbach MN (2005) Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells. Nat Immunol 6:1029–1037

    Article  PubMed  CAS  Google Scholar 

  4. Feuerer M, Beckhove P, Garbi N, Mahnke Y, Limmer A, Hommel M, Hammerling GJ, Kyewski B, Hamann A, Umansky V, Schirrmacher V (2003) Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med 9:1151–1157

    Article  PubMed  CAS  Google Scholar 

  5. Di Rosa F, Pabst R (2005) The bone marrow: a nest for migratory memory T cells. Trends Immunol 26:360–366

    Article  PubMed  CAS  Google Scholar 

  6. Sipkins DA, Wie X, Wu JW, Runnels JM, Cote D, Means TK, Luster AD, Scadden DT, Lin CP (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435:969–973

    Article  PubMed  CAS  Google Scholar 

  7. Khazaie K, Prifti S, Beckhove P, Griesbach A, Russell S, Collins M, Schirrmacher V (1994) Persistence of dormant tumor cells in the bone marrow of tumor cell-vaccinated mice correlates with long-term immunological protection. Proc Natl Acad Sci USA 91:7430–7434

    Article  PubMed  CAS  Google Scholar 

  8. Muller M, Gounari F, Prifti S, Hacker HJ, Schirrmacher V, Khazaie K (1998) EblacZ tumor dormancy in bone marrow and lymph nodes: active control of proliferating tumor cells by CD8+ immune T cells. Cancer Res 58:5439–5446

    PubMed  CAS  Google Scholar 

  9. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heth WR (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393:478–480

    Article  PubMed  CAS  Google Scholar 

  10. Ridge JP, Fuchs EJ, Matzinger P (1996) Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science 271:1723–1726

    Article  PubMed  CAS  Google Scholar 

  11. Schoenberger SP, Toes RE, Van der Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393:480–483

    Article  PubMed  CAS  Google Scholar 

  12. Kammertoens T, Schuler T, Blankenstein T (2005) Immunotherapy: target the stroma to hit the tumor. Trends Mol Med 11:225–231

    Article  PubMed  CAS  Google Scholar 

  13. Nishikawa H, Kato T, Tawara I, Ikeda H, Kuribayashi K, Allen PM, Schreiber RD, Old LJ, Shiku H (2005) IFN-gamma controls the generation/activation of CD4+ CD25+ regulatory T cells in antitumor immune response. J Immunol 175:4433–4440

    PubMed  CAS  Google Scholar 

  14. Schirrmacher V, Feuerer M, Fournier P, Ahlert T, Umansky V, Beckhove P (2003) T-cell priming in bone marrow: the potential for long-lasting protective anti-tumor immunity. Trends Mol Med 9:526–534

    Article  PubMed  CAS  Google Scholar 

  15. Feuerer M, Beckhove P, Bai L, Solomayer EF, Bastert G, Diel IJ, Pedain C, Oberniedermayr M, Schirrmacher V, Umansky V (2001) Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nat Med 7:452–458

    Article  PubMed  CAS  Google Scholar 

  16. Beckhove P, Feuerer M, Dolenc M, Schuetz F, Choi C, Sommerfeldt N, Schwendemann J, Ehlert K, Altevogt P, Bastert G, Schirrmacher V, Umansky V (2004) Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. J Clin Invest 114:67–76

    PubMed  CAS  Google Scholar 

  17. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712

    Article  PubMed  CAS  Google Scholar 

  18. Lanzavecchia A, Sallusto F (2000) From synapses to immunological memory: the role of sustained T cell stimulation. Curr Opin Immunol 12:92–98

    Article  PubMed  CAS  Google Scholar 

  19. Geginat J, Sallusto F, Lanzavecchia A (2001) Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4(+) T cells. J Exp Med 194:1711–1719

    Article  PubMed  CAS  Google Scholar 

  20. Schwendemann J, Choi C, Schirrmacher V, Beckhove P (2005) Dynamic differentiation of activated human peripheral blood CD8+ and CD4+ effector memory T cells. J Immunol 175:1433–1439

    PubMed  CAS  Google Scholar 

  21. Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z, Finkelstein SE, Theoret MR, Rosenberg SA, Restifo NP (2005) Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest 115:1616–1626

    Article  PubMed  CAS  Google Scholar 

  22. Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE, Palmer DC, Antony PA, Hwang ST, Rosenberg SA, Waldmann TA, Restifo NP (2005) Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 102:9571–9576

    Article  PubMed  CAS  Google Scholar 

  23. Dailey M (1998) Expression of T lymphocyte adhesion molecules: regulation during antigen-induced T cell activation and differentiation. Crit Rev Immunol 18:153–184

    PubMed  CAS  Google Scholar 

  24. Soule HD, Vazguez J, Long A, Albert S, Brennan M (1973) A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51:1409–1416

    PubMed  CAS  Google Scholar 

  25. Bai L, Beckhove P, Feuerer M, Umansky V, Choi C, Solomayer FS, Diel IJ, Schirrmacher V (2002) Cognate interactions between memory T cells and tumor antigen-presenting dendritic cells from bone marrow of breast cancer patients: bidirectional cell stimulation, survival and antitumor activity in vivo. Int J Cancer 103:10–20

    Google Scholar 

  26. Sommerfeldt N, Schütz F, Sohn C, Förster J, Schirrmacher V, Beckhove P (2006) The shaping of a polyvalent and highly individual T-cell repertoire in the bone marrow of breast cancer patients. Cancer Res 66:8258–8265

    Article  PubMed  CAS  Google Scholar 

  27. Kammerer U, Thanner F, Kapp M, Dietl J, Sutterlin M (2003) Expression of tumor markers on breast and ovarian cancer cell lines. Anticancer Res 23:1051–1055

    PubMed  Google Scholar 

  28. Jiang XP, Yang DC, Elliott RL, Head JF (2000) Vaccination with a mixed vaccine of autogenous and allogeneic breast cancer cells and tumor associated antigens CA15–3, CEA and CA125-results in immune and clinical responses in breast cancer patients. Cancer Biother Radiopharm 15:495–505

    Article  PubMed  CAS  Google Scholar 

  29. Sommerfeldt N, Beckhove P, Ge Y, Schütz F, Choi C, Bucur M, Domschke C, Sohn C, Schneeweis A, Rom J, Pollmann D, Leucht D, Vlodavsky I, Schirrmacher V (2006) Heparanase: a new metastasis-associated antigen recognized in breast cancer patients by spontaneously induced memory T lymphocytes. Cancer Res 66:7716–7723

    Article  PubMed  CAS  Google Scholar 

  30. Nummer D, Suri-Payer E, Schmitz-Winnenthal H, Bonertz A, Galindo L, Antolovich D, Koch M, Büchler M, Weitz J, Schirrmacher V, Beckhove P (2007) Role of tumor endothelium in CD4+ CD25+ regulatory T cell infiltration of human pancreatic carcinoma. J Natl Cancer Inst 99:1188–1199

    Article  PubMed  CAS  Google Scholar 

  31. Strauss L, Bergmann C, Szczepanski M, Gooding W, Johnson JT, Whiteside TL (2007) A unique subset of CD4+ CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin Cancer Res 13:4345–4354

    Article  PubMed  CAS  Google Scholar 

  32. Moore KW, de Waal MR, Coffmann RL, O’Gara A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  PubMed  CAS  Google Scholar 

  33. Mocellin S, Panelli MC, Wang E, Nagorsen D, Marincola FM (2003) The dual role of IL-10. Trends Immunol 24:36–43

    Article  PubMed  CAS  Google Scholar 

  34. Mocellin S, Ohnmacht GA, Wang E, Marincola FM (2001) Kinetics of cytokine expression in melanoma metastases classifies immune responsiveness. Int J Cancer 93:236–242

    Article  PubMed  CAS  Google Scholar 

  35. Bernhard H, Neudorfer J, Gebhard K, Conrad H, Hermann H, Nährig J, Fend F, Weber W, Busch D, Peschel C (2008) Adoptive transfer of autologous, HER2-speciWc, cytotoxic T lymphocytes for the treatment of HER2-overexpressing breast cancer. Cancer Immunol Immunother 57:271–280

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Beckhove.

Additional information

Florian Schuetz and Katrin Ehlert contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuetz, F., Ehlert, K., Ge, Y. et al. Treatment of advanced metastasized breast cancer with bone marrow-derived tumour-reactive memory T cells: a pilot clinical study. Cancer Immunol Immunother 58, 887–900 (2009). https://doi.org/10.1007/s00262-008-0605-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0605-3

Keywords

Navigation