Skip to main content

Advertisement

Log in

Immune restoration in head and neck cancer patients after in vivo COX-2 inhibition

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose

To determine the immunomodulatory effects of in vivo COX-2 inhibition on leukocyte infiltration and function in patients with head and neck cancer.

Experimental design

Patients with squamous cell carcinoma of the head and neck preoperatively received a specific COX-2 inhibitor (rofecoxib, 25 mg daily) orally for 3 weeks. Serum and tumor specimens were collected at the start of COX-2 inhibition (day 0) and again on the day of surgery (day 21). Adhesion to peripheral blood monocytes to ICAM-1 was examined. Percentages of tumor-infiltrating monocytes (CD68, CCR5) and lymphocytes (CCR5, CD4, CD8 and CD25) were determined by immunohistochemistry.

Results

Monocytes obtained from untreated cancer patients showed lower binding to ICAM-1 compared to monocytes of healthy donors but significantly regained adhesion affinity following incubation in sera of healthy donors. Conversely, sera of cancer patients inhibited adhesion of healthy donors’ monocytes. Tumor monocyte adhesion to ICAM-1 was increased (P < 0.001) after 21 days of COX-2 inhibition, and concomitant increases in tumor infiltrating monocytes (CD68+), lymphocytes (CD68− CCR5+, CD4+ and CD8+) and activated (CD25+) T cells were observed.

Conclusions

Short-term administration of a COX2 inhibitor restored monocyte binding to ICAM-1 and increased infiltration into the tumor of monocytes and Th1 and CD25+ activated lymphocytes. Thus, in vivo inhibition of the COX-2 pathway may be useful in potentiating specific active immunotherapy of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. FitzGerald GA, Patrono C (2001) The coxibs, selective inhibitors of cyclooxygenase-2. N Engl J Med 345:433-442

    Article  PubMed  CAS  Google Scholar 

  2. Goodwin JS, Ceuppens J (1983) Regulation of the immune response by prostaglandins. J Clin Immunol 3:295–315

    Article  PubMed  CAS  Google Scholar 

  3. Yang L, Yamagata N, Yadav R, Brandon S, Courtney RL, Morrow JD, Shyr Y, Boothby M, Joyce S, Carbone DP, Breyer RM (2003) Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J Clin Invest 111:727–735

    Article  PubMed  CAS  Google Scholar 

  4. Bernasconi S, Peri G, Sironi M, Mantovani A (1991) Involvement of leukocyte (beta 2) integrins (CD18/CD11) in human monocyte tumoricidal activity. Int J Cancer 49:267–273

    Article  PubMed  CAS  Google Scholar 

  5. Webb DS, Mostowski HS, Gerrard TL (1991) Cytokine-induced enhancement of ICAM-1 expression results in increased vulnerability of tumor cells to monocyte-mediated lysis. J Immunol 146:3682–3686

    PubMed  CAS  Google Scholar 

  6. Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, Bottazzi B, Doni A, Vincenzo B, Pasqualini F, Vago L, Nebuloni M, Mantovani A, Sica A (2006) A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107:2112–2122

    Article  PubMed  CAS  Google Scholar 

  7. Elgert KD, Alleva DG, Mullins DW (1998) Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 64:275–290

    PubMed  CAS  Google Scholar 

  8. Huang M, Stolina M, Sharma S, Mao JT, Zhu L, Miller PW, Wollman J, Herschman H, Dubinett SM (1998) Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res 58:1208–1216

    PubMed  CAS  Google Scholar 

  9. Sica A, Saccani A, Bottazzi B, Bernasconi S, Allavena P, Gaetano B, Fei F, LaRosa G, Scotton C, Balkwill F, Mantovani A (2000) Defective expression of the monocyte chemotactic protein-1 receptor CCR2 in macrophages associated with human ovarian carcinoma. J Immunol 164:733–738

    PubMed  CAS  Google Scholar 

  10. Stolina M, Sharma S, Lin Y, Dohadwala M, Gardner B, Luo J, Zhu L, Kronenberg M, Miller PW, Portanova J, Lee JC, Dubinett SM (2000) Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol 164:361–370

    PubMed  CAS  Google Scholar 

  11. Sharma S, Stolina M, Yang SC, Baratelli F, Lin JF, Atianzar K, Luo J, Zhu L, Lin Y, Huang M, Dohadwala M, Batra RK, Dubinett SM (2003) Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin Cancer Res 9:961–968

    PubMed  CAS  Google Scholar 

  12. Grilli M, Pizzi M, Memo M, Spano P (1996) Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappaB activation. Science 274:1383–1385

    Article  PubMed  CAS  Google Scholar 

  13. Kashfi K, Rigas B (2005) Non-COX-2 targets and cancer: expanding the molecular target repertoire of chemoprevention. Biochem Pharmacol 70:969–986

    Article  PubMed  CAS  Google Scholar 

  14. Shureiqi I, Chen D, Lee JJ, Yang P, Newman RA, Brenner DE, Lotan R, Fischer SM, Lippman SM (2000) 15-LOX-1: a novel molecular target of nonsteroidal anti-inflammatory drug-induced apoptosis in colorectal cancer cells. J Natl Cancer Inst 92:1136–1142

    Article  PubMed  CAS  Google Scholar 

  15. Yamamoto Y, Yin MJ, Lin KM, Gaynor RB (1999) Sulindac inhibits activation of the NF-kappaB pathway. J Biol Chem 274:27307–27314

    Article  PubMed  CAS  Google Scholar 

  16. Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B (2000) Role of BAX in the apoptotic response to anticancer agents. Science 290:989–992

    Article  PubMed  CAS  Google Scholar 

  17. Zhang Z, DuBois RN (2000) Par-4, a proapoptotic gene, is regulated by NSAIDs in human colon carcinoma cells. Gastroenterology 118:1012–1017

    Article  PubMed  CAS  Google Scholar 

  18. Mantovani A, Schioppa T, Biswas SK, Marchesi F, Allavena P, Sica A (2003) Tumor-associated macrophages and dendritic cells as prototypic type II polarized myeloid populations. Tumori 89:459–468

    PubMed  CAS  Google Scholar 

  19. Zeidler R, Csanady M, Gires O, Lang S, Schmitt B, Wollenberg B (2000) Tumor-derived Prostaglandin E2 inhibits monocyte function by interfering with their chemotactic and adhesive potential. FASEB J 14:661–668

    PubMed  CAS  Google Scholar 

  20. Hughes PE, Pfaff M (1998) Integrin affinity modulation. Trends Cell Biol 8:359–364

    Article  PubMed  CAS  Google Scholar 

  21. Loetscher P, Uguccioni M, Bordoli L, Baggiolini M, Moser B, Chizzolini C, Dayer JM (1998) CCR5 is characteristic of Th1 lymphocytes. Nature 391:344–345

    Article  PubMed  CAS  Google Scholar 

  22. De Vita F, Orditura M, Galizia G, Romano C, Lieto E, Iodice P, Tuccillo C, Catalano G (2000) Serum interleukin-10 is an independent prognostic factor in advanced solid tumors. Oncol Rep 7:357–361

    PubMed  Google Scholar 

  23. Elsasser-Beile U, Kolble N, Grussenmeyer T, Schultze-Seemann W, Wetterauer U, Gallati H, Schulte Monting J, von Kleist S (1998) Th1 and Th2 cytokine response patterns in leukocyte cultures of patients with urinary bladder, renal cell and prostate carcinomas. Tumour Biol 19:470–476

    Article  PubMed  CAS  Google Scholar 

  24. Lauerova L, Dusek L, Simickova M, Kocak I, Vagundova M, Zaloudik J, Kovarik J (2002) Malignant melanoma associates with Th1/Th2 imbalance that coincides with disease progression and immunotherapy response. Neoplasma 49:159–166

    PubMed  CAS  Google Scholar 

  25. Mori T, Takada R, Watanabe R, Okamoto S, Ikeda Y (2001) T-helper (Th)1/Th2 imbalance in patients with previously untreated B-cell diffuse large cell lymphoma. Cancer Immunol Immunother 50:566–568

    Article  PubMed  CAS  Google Scholar 

  26. Nakamura E, Megumi Y, Kobayashi T, Kamoto T, Ishitoya S, Terachi T, Tachibana M, Matsushiro H, Habuchi T, Kakehi Y, Ogawa O (2002) Genetic polymorphisms of the interleukin-4 receptor alpha gene are associated with an increasing risk and a poor prognosis of sporadic renal cell carcinoma in a Japanese population. Clin Cancer Res 8:2620–2625

    PubMed  CAS  Google Scholar 

  27. Wittke F, Hoffmann R, Buer J, Dallmann I, Oevermann K, Sel S, Wandert T, Ganser A, Atzpodien J. (1999) Interleukin 10 (IL-10): an immunosuppressive factor and independent predictor in patients with metastatic renal cell carcinoma. Br J Cancer 79:1182–1184

    Article  PubMed  CAS  Google Scholar 

  28. Ohno Y, Ohno S, Suzuki N, Kamei T, Inagawa H, Soma G, Inoue M (2005) Role of cyclooxygenase-2 in immunomodulation and prognosis of endometrial carcinoma. Int J Cancer 114:696–701

    Article  PubMed  CAS  Google Scholar 

  29. Ansell SM, Stenson M, Habermann TM, Jelinek DF, Witzig TE (2001) CD4+ T-cell immune response to large B-cell non-Hodgkin’s lymphoma predicts patient outcome. J Clin Oncol 19:720–726

    PubMed  CAS  Google Scholar 

  30. Marrogi AJ, Munshi A, Merogi AJ, Ohadike Y, El-Habashi A, Marrogi OL, Freeman SM (1997) Study of tumor infiltrating lymphocytes and transforming growth factor-beta as prognostic factors in breast carcinoma. Int J Cancer 74:492–501

    Article  PubMed  CAS  Google Scholar 

  31. Mihm MC Jr, Clemente CG, Cascinelli N (1996) Tumor infiltrating lymphocytes in lymph node melanoma metastases: a histopathologic prognostic indicator and an expression of local immune response. Lab Invest 74:43–47

    PubMed  Google Scholar 

  32. Morita M, Kuwano H, Araki K, Egashira A, Kawaguchi H, Saeki H, Kitamura K, Ohno S, Sugimachi K (2001) Prognostic significance of lymphocyte infiltration following preoperative chemoradiotherapy and hyperthermia for esophageal cancer. Int J Radiat Oncol Biol Phys 49:1259–1266

    Article  PubMed  CAS  Google Scholar 

  33. Ropponen KM, Eskelinen MJ, Lipponen PK, Alhava E, Kosma VM (1997) Prognostic value of tumour-infiltrating lymphocytes (TILs) in colorectal cancer. J Pathol 182:318–324

    Article  PubMed  CAS  Google Scholar 

  34. Schumacher K, Haensch W, Roefzaad C, Schlag PM (2001) Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas. Cancer Res 61:3932–3936

    PubMed  CAS  Google Scholar 

  35. Baratelli F, Lin Y, Zhu L, Yang SC, Heuze-Vourc’h N, Zeng G, Reckamp K, Dohadwala M, Sharma S, Dubinett SM (2005) Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J Immunol 175:1483–1490

    PubMed  CAS  Google Scholar 

  36. Mahic M, Yaqub S, Johansson CC, Tasken K, Aandahl EM (2006) FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J Immunol 177:246–254

    PubMed  CAS  Google Scholar 

  37. Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B, Baratelli F, Huang M, Batra RK, Dubinett SM (2005) Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 65:5211–5220

    Article  PubMed  CAS  Google Scholar 

  38. Grabenbauer GG, Lahmer G, Distel L, Niedobitek G (2006) Tumor-infiltrating cytotoxic T cells but not regulatory T cells predict outcome in anal squamous cell carcinoma. Clin Cancer Res 12:3355–3360

    Article  PubMed  CAS  Google Scholar 

  39. Petersen RP, Campa MJ, Sperlazza J, Conlon D, Joshi MB, Harpole DHJ, Patz EFJ (2006) Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 107:2866–2872

    Article  PubMed  Google Scholar 

  40. Carreras J, Lopez-Guillermo A, Fox BC, Colomo L, Martinez A, Roncador G, Montserrat E, Campo E, Banham AH (2006) High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 108:2957–2964

    Article  PubMed  CAS  Google Scholar 

  41. Lang S, Lauffer L, Clausen C, Lohr I, Schmitt B, Holzel D, Wollenberg B, Gires O, Kastenbauer E, Zeidler R (2003) Impaired monocyte function in cancer patients: restoration with a cyclooxygenase-2 inhibitor. FASEB J 17:286–288

    PubMed  CAS  Google Scholar 

  42. Duff M, Stapleton PP, Mestre JR, Maddali S, Smyth GP, Yan Z, Freeman TA, Daly JM (2003) Cyclooxygenase-2 inhibition improves macrophage function in melanoma and increases the antineoplastic activity of interferon gamma. Ann Surg Oncol 10:305–313

    Article  PubMed  Google Scholar 

  43. Gilboa E (2004) The promise of cancer vaccines. Nat Rev Cancer 4:401–411

    Article  PubMed  CAS  Google Scholar 

  44. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Baerbel Schmitt for excellent technical assistance and Dieter Hoelzel for help with statistics. Supported by the Deutsche Forschungsgemeinschaft (grant Ze419/7), the Rudolf-Bartling Stiftung, and the Dr. Sepp und Hanne Sturm-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Zeidler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, S., Tiwari, S., Andratschke, M. et al. Immune restoration in head and neck cancer patients after in vivo COX-2 inhibition. Cancer Immunol Immunother 56, 1645–1652 (2007). https://doi.org/10.1007/s00262-007-0312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0312-5

Keywords

Navigation