Skip to main content

Advertisement

Log in

Magnetic resonance safety

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) has a superior soft-tissue contrast compared to other radiological imaging modalities and its physiological and functional applications have led to a significant increase in MRI scans worldwide. A comprehensive MRI safety training to protect patients and other healthcare workers from potential bio-effects and risks of the magnetic fields in an MRI suite is therefore essential. The knowledge of the purpose of safety zones in an MRI suite as well as MRI appropriateness criteria is important for all healthcare professionals who will work in the MRI environment or refer patients for MRI scans. The purpose of this article is to give an overview of current magnetic resonance safety guidelines and discuss the safety risks of magnetic fields in an MRI suite including forces and torque of ferromagnetic objects, tissue heating, peripheral nerve stimulation, and hearing damages. MRI safety and compatibility of implanted devices, MRI scans during pregnancy, and the potential risks of MRI contrast agents will also be discussed, and a comprehensive MRI safety training to avoid fatal accidents in an MRI suite will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chakeres DW, de Vocht F (2005) Static magnetic field effects on human subjects related to magnetic resonance imaging systems. Prog Biophys Mol Biol 87(2–3):255–265. doi:10.1016/j.pbiomolbio.2004.08.012

    Article  PubMed  Google Scholar 

  2. Feychting M (2005) Health effects of static magnetic fields—a review of the epidemiological evidence. Prog Biophys Mol Biol 87(2–3):241–246. doi:10.1016/j.pbiomolbio.2004.08.007

    Article  PubMed  Google Scholar 

  3. Hipp E, Sammet S, Straus C (2012) MR safety standards for medical students nationwide. In: Proceedings of the 19th Annual Meeting of ISMRM, Melbourne, Australia (abstract 2731)

  4. Shellock FG (2001) Magnetic resonance procedures: health effects and safety. Boca Raton: CRC Press

    Google Scholar 

  5. Karpowicz J, Gryz K (2006) Health risk assessment of occupational exposure to a magnetic field from magnetic resonance imaging devices. Int J Occup Saf Ergon JOSE 12(2):155–167

    Article  PubMed  Google Scholar 

  6. ASTM F2052-00 (2013) Standard Test Method for Measurement of Magnetically Induced Displacement Force on Passive Implants in the Magnetic Resonance Environment. West Conshohocken: ASTM International

  7. Sammet CL, Yang X, Wassenaar PA, et al. (2013) RF-related heating assessment of extracranial neurosurgical implants at 7T. Magn Reson Imaging 31(6):1029–1034. doi:10.1016/j.mri.2012.10.025

    Article  PubMed  Google Scholar 

  8. Kanal E, Barkovich AJ, Bell C, et al. (2013) ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging JMRI 37(3):501–530. doi:10.1002/jmri.24011

    Article  PubMed  Google Scholar 

  9. Sammet S (2013) Implementation of a comprehensive MR safety course for medical students. In: Proceedings of the 20th Annual Meeting of ISMRM, Salt Lake City (abstract 4071)

  10. Shellock FG, Kanal E (1996) Magnetic resonance: bioeffects, safety, and patient management, 2nd edn. Philadelphia: Lippincott-Raven

    Google Scholar 

  11. Simmons A, Hakansson K (2011) Magnetic resonance safety. Methods Mol Biol 711:17–28. doi:10.1007/978-1-61737-992-5_2

    Article  CAS  PubMed  Google Scholar 

  12. Hansson Mild K, Hand J, Hietanen M, et al. (2013) Exposure classification of MRI workers in epidemiological studies. Bioelectromagnetics 34(1):81–84. doi:10.1002/bem.21728

    Article  PubMed  Google Scholar 

  13. Sammet S, Sammet CL (2015) Implementation of a comprehensive MR safety course for medical students. J Magn Reson Imaging JMRI 42(6):1478–1486. doi:10.1002/jmri.24993

    Article  PubMed  Google Scholar 

  14. Tsai LL, Grant AK, Mortele KJ, Kung JW, Smith MP (2015) A practical guide to MR imaging safety: what radiologists need to know. Radiographics 35(6):1722–1737. doi:10.1148/rg.2015150108

    Article  PubMed  Google Scholar 

  15. Ghodbane S, Lahbib A, Sakly M, Abdelmelek H (2013) Bioeffects of static magnetic fields: oxidative stress, genotoxic effects, and cancer studies. BioMed Res Int 2013:602987. doi:10.1155/2013/602987

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hartwig V, Giovannetti G, Vanello N, et al. (2009) Biological effects and safety in magnetic resonance imaging: a review. Int J Environ Res Public Health 6(6):1778–1798. doi:10.3390/ijerph6061778

    Article  PubMed  PubMed Central  Google Scholar 

  17. Glover PM, Cavin I, Qian W, Bowtell R, Gowland PA (2007) Magnetic-field-induced vertigo: a theoretical and experimental investigation. Bioelectromagnetics 28(5):349–361. doi:10.1002/bem.20316

    Article  CAS  PubMed  Google Scholar 

  18. Heinrich A, Szostek A, Nees F, et al. (2011) Effects of static magnetic fields on cognition, vital signs, and sensory perception: a meta-analysis. J Magn Reson Imaging JMRI 34(4):758–763. doi:10.1002/jmri.22720

    Article  PubMed  Google Scholar 

  19. International Electrotechnical Commission (IEC) (2002) Medical electrical equipment, particular requirements for the safety of magnetic resonance equipment for medical diagnosis. International Standard IEC 60601-2-33. Accessed 1 Mar 2016

  20. Atkinson IC, Renteria L, Burd H, Pliskin NH, Thulborn KR (2007) Safety of human MRI at static fields above the FDA 8 T guideline: sodium imaging at 9.4 T does not affect vital signs or cognitive ability. J Magn Reson Imaging JMRI 26(5):1222–1227. doi:10.1002/jmri.21150

    Article  PubMed  Google Scholar 

  21. Atkinson IC, Sonstegaard R, Pliskin NH, Thulborn KR (2010) Vital signs and cognitive function are not affected by 23-sodium and 17-oxygen magnetic resonance imaging of the human brain at 9.4 T. J Magn Reson Imaging JMRI 32(1):82–87. doi:10.1002/jmri.22221

    Article  PubMed  Google Scholar 

  22. Besson JA, Foreman EI, Eastwood LM, Smith FW, Ashcroft GW (1984) Cognitive evaluation following NMR imaging of the brain. J Neurol Neurosurg Psychiatry 47(3):314–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brockway JP, Bream PR Jr (1992) Does memory loss occur after MR imaging? J Magn Reson Imaging JMRI 2(6):721–728

    Article  CAS  PubMed  Google Scholar 

  24. Brody AS, Embury SH, Mentzer WC, Winkler ML, Gooding CA (1988) Preservation of sickle cell blood-flow patterns during MR imaging: an in vivo study. AJR Am J Roentgenol 151(1):139–141. doi:10.2214/ajr.151.1.139

    Article  CAS  PubMed  Google Scholar 

  25. Brody AS, Sorette MP, Gooding CA, et al. (1985) AUR memorial Award. Induced alignment of flowing sickle erythrocytes in a magnetic field. A preliminary report. Invest Radiol 20(6):560–566

    Article  CAS  PubMed  Google Scholar 

  26. Cavin ID, Glover PM, Bowtell RW, Gowland PA (2007) Thresholds for perceiving metallic taste at high magnetic field. J Magn Reson Imaging JMRI 26(5):1357–1361. doi:10.1002/jmri.21153

    Article  PubMed  Google Scholar 

  27. de Vocht F, Stevens T, Glover P, et al. (2007) Cognitive effects of head-movements in stray fields generated by a 7 Tesla whole-body MRI magnet. Bioelectromagnetics 28(4):247–255. doi:10.1002/bem.20311

    Article  PubMed  Google Scholar 

  28. de Vocht F, Stevens T, van Wendel-de-Joode B, Engels H, Kromhout H (2006) Acute neurobehavioral effects of exposure to static magnetic fields: analyses of exposure-response relations. J Magn Reson Imaging JMRI 23(3):291–297. doi:10.1002/jmri.20510

    Article  PubMed  Google Scholar 

  29. Franco G, Mora E, Perduri R (2010) Focusing ethical dilemmas of evidence-based practice in SMF-exposed MRI-workers: a qualitative analysis. Int Arch Occup Environ Health 83(4):417–421. doi:10.1007/s00420-009-0476-8

    Article  PubMed  Google Scholar 

  30. Fuentes MA, Trakic A, Wilson SJ, Crozier S (2008) Analysis and measurements of magnetic field exposures for healthcare workers in selected MR environments. IEEE Trans Biomed Eng 55(4):1355–1364. doi:10.1109/TBME.2007.913410

    Article  PubMed  Google Scholar 

  31. Glover PM (2009) Interaction of MRI field gradients with the human body. Phys Med Biol 54(21):R99–R115. doi:10.1088/0031-9155/54/21/R01

    Article  CAS  PubMed  Google Scholar 

  32. Heinrich A, Szostek A, Meyer P, et al. (2013) Cognition and sensation in very high static magnetic fields: a randomized case-crossover study with different field strengths. Radiology 266(1):236–245. doi:10.1148/radiol.12112172

    Article  PubMed  Google Scholar 

  33. Hong CZ, Shellock FG (1990) Short-term exposure to a 1.5 tesla static magnetic field does not affect somato-sensory-evoked potentials in man. Magn Reson Imaging 8(1):65–69

    Article  CAS  PubMed  Google Scholar 

  34. Hsieh CH, Lee MC, Tsai-Wu JJ, et al. (2008) Deleterious effects of MRI on chondrocytes. Osteoarthr Cartil 16(3):343–351. doi:10.1016/j.joca.2007.07.001

    Article  PubMed  Google Scholar 

  35. Innis NK, Ossenkopp KP, Prato FS, Sestini E (1986) Behavioral effects of exposure to nuclear magnetic resonance imaging: II. Spatial memory tests. Magn Reson Imaging 4(4):281–284

    Article  CAS  PubMed  Google Scholar 

  36. Kangarlu A, Burgess RE, Zhu H, et al. (1999) Cognitive, cardiac, and physiological safety studies in ultra high field magnetic resonance imaging. Magn Reson Imaging 17(10):1407–1416

    Article  CAS  PubMed  Google Scholar 

  37. Kannala S, Toivo T, Alanko T, Jokela K (2009) Occupational exposure measurements of static and pulsed gradient magnetic fields in the vicinity of MRI scanners. Phys Med Biol 54(7):2243–2257. doi:10.1088/0031-9155/54/7/026

    Article  PubMed  Google Scholar 

  38. Karpowicz J, Gryz K, Politanski P, Zmyslony M (2011) Exposure to static magnetic field and health hazards during the operation of magnetic resonance scanners. Med Pr 62(3):309–321

    PubMed  Google Scholar 

  39. Karpowicz J, Zradzinski P, Gryz K (2012) Measures of occupational exposure to time-varying low frequency magnetic fields of non-uniform spatial distribution in the light of international guidelines and electrodynamic exposure effects in the human body. Med Pr 63(3):317–328

    PubMed  Google Scholar 

  40. Kay HH, Herfkens RJ, Kay BK (1988) Effect of magnetic resonance imaging on Xenopus laevis embryogenesis. Magn Reson Imaging 6(5):501–506

    Article  CAS  PubMed  Google Scholar 

  41. Laszlo J, Gyires K (2009) 3 T homogeneous static magnetic field of a clinical MR significantly inhibits pain in mice. Life Sci 84(1–2):12–17. doi:10.1016/j.lfs.2008.10.009

    Article  CAS  PubMed  Google Scholar 

  42. McRobbie DW (2012) Occupational exposure in MRI. Br J Radiol 85(1012):293–312. doi:10.1259/bjr/30146162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Muller S, Hotz M (1990) Human brainstem auditory evoked potentials (BAEP) before and after MR examinations. Magn Reson Med 16(3):476–480

    Article  CAS  PubMed  Google Scholar 

  44. Ossenkopp KP, Innis NK, Prato FS, Sestini E (1986) Behavioral effects of exposure to nuclear magnetic resonance imaging: I. Open-field behavior and passive avoidance learning in rats. Magn Reson Imaging 4(4):275–280

    Article  CAS  PubMed  Google Scholar 

  45. Patel M, Williamsom RA, Dorevitch S, Buchanan S (2008) Pilot study investigating the effect of the static magnetic field from a 9.4-T MRI on the vestibular system. J Occup Environ Med 50(5):576–583. doi:10.1097/JOM.0b013e318162f5d6

    Article  CAS  PubMed  Google Scholar 

  46. Prasad N, Wright DA, Ford JJ, Thornby JI (1990) Safety of 4-T MR imaging: study of effects on developing frog embryos. Radiology 174(1):251–253. doi:10.1148/radiology.174.1.2294557

    Article  CAS  PubMed  Google Scholar 

  47. Sakurai T, Terashima S, Miyakoshi J (2009) Effects of strong static magnetic fields used in magnetic resonance imaging on insulin-secreting cells. Bioelectromagnetics 30(1):1–8. doi:10.1002/bem.20433

    Article  CAS  PubMed  Google Scholar 

  48. Schaap K, Christopher-De Vries Y, Slottje P, Kromhout H (2013) Inventory of MRI applications and workers exposed to MRI-related electromagnetic fields in the Netherlands. Eur J Radiol 82(12):2279–2285. doi:10.1016/j.ejrad.2013.07.023

    Article  PubMed  Google Scholar 

  49. Schenck JF (1992) Health and physiological effects of human exposure to whole-body four-tesla magnetic fields during MRI. Ann N Y Acad Sci 649:285–301

    Article  CAS  PubMed  Google Scholar 

  50. Schenck JF (1998) MR safety at high magnetic fields. Magn Reson Imaging Clin N Am 6(4):715–730

    CAS  PubMed  Google Scholar 

  51. Schenck JF (2000) Safety of strong, static magnetic fields. J Magn Reson Imaging JMRI 12(1):2–19

    Article  CAS  PubMed  Google Scholar 

  52. Schenck JF, Dumoulin CL, Redington RW, et al. (1992) Human exposure to 4.0-Tesla magnetic fields in a whole-body scanner. Med Phys 19(4):1089–1098

    Article  CAS  PubMed  Google Scholar 

  53. Schlamann M, Voigt MA, Maderwald S, et al. (2010) Exposure to high-field MRI does not affect cognitive function. J Magn Reson Imaging JMRI 31(5):1061–1066. doi:10.1002/jmri.22065

    Article  PubMed  Google Scholar 

  54. Schlamann M, Yoon MS, Maderwald S, et al. (2010) Short term effects of magnetic resonance imaging on excitability of the motor cortex at 1.5T and 7T. Acad Radiol 17(3):277–281. doi:10.1016/j.acra.2009.10.004

    Article  PubMed  Google Scholar 

  55. Schwartz JL, Crooks LE (1982) NMR imaging produces no observable mutations or cytotoxicity in mammalian cells. AJR Am J Roentgenol 139(3):583–585. doi:10.2214/ajr.139.3.583

    Article  CAS  PubMed  Google Scholar 

  56. Schwenzer NF, Bantleon R, Maurer B, et al. (2007) In vitro evaluation of magnetic resonance imaging at 3.0 tesla on clonogenic ability, proliferation, and cell cycle in human embryonic lung fibroblasts. Invest Radiol 42(4):212–217. doi:10.1097/01.rli.0000255831.40115.83

    Article  PubMed  Google Scholar 

  57. Schwenzer NF, Bantleon R, Maurer B, et al. (2007) Do static or time-varying magnetic fields in magnetic resonance imaging (3.0 T) alter protein-gene expression?-A study on human embryonic lung fibroblasts. J Magn Reson Imaging JMRI 26(5):1210–1215. doi:10.1002/jmri.21145

    Article  PubMed  Google Scholar 

  58. Shellock FG, Crues JV (2004) MR procedures: biologic effects, safety, and patient care. Radiology 232(3):635–652. doi:10.1148/radiol.2323030830

    Article  PubMed  Google Scholar 

  59. Shellock FG, Schaefer DJ, Crues JV (1989) Exposure to a 1.5-T static magnetic field does not alter body and skin temperatures in man. Magn Reson Med 11(3):371–375

    Article  CAS  PubMed  Google Scholar 

  60. Shellock FG, Schaefer DJ, Gordon CJ (1986) Effect of a 1.5 T static magnetic field on body temperature of man. Magn Reson Med 3(4):644–647

    Article  CAS  PubMed  Google Scholar 

  61. Short WO, Goodwill L, Taylor CW, et al. (1992) Alteration of human tumor cell adhesion by high-strength static magnetic fields. Invest Radiol 27(10):836–840

    Article  CAS  PubMed  Google Scholar 

  62. Silva AK, Silva EL, Egito ES, Carrico AS (2006) Safety concerns related to magnetic field exposure. Radiat Environ Biophys 45(4):245–252. doi:10.1007/s00411-006-0065-0

    Article  PubMed  Google Scholar 

  63. Tomasi DG, Wang R (2007) Induced magnetic field gradients and forces in the human head in MRI. J Magn Reson Imaging JMRI 26(5):1340–1345. doi:10.1002/jmri.21143

    Article  PubMed  Google Scholar 

  64. Toyomaki A, Yamamoto T (2007) Observation of changes in neural activity due to the static magnetic field of an MRI scanner. J Magn Reson Imaging JMRI 26(5):1216–1221. doi:10.1002/jmri.21151

    Article  PubMed  Google Scholar 

  65. Valiron O, Peris L, Rikken G, et al. (2005) Cellular disorders induced by high magnetic fields. J Magn Reson Imaging JMRI 22(3):334–340. doi:10.1002/jmri.20398

    Article  PubMed  Google Scholar 

  66. van Nierop LE, Slottje P, van Zandvoort MJ, de Vocht F, Kromhout H (2012) Effects of magnetic stray fields from a 7 tesla MRI scanner on neurocognition: a double-blind randomised crossover study. Occup Environ Med 69(10):759–766. doi:10.1136/oemed-2011-100468

    Article  PubMed  Google Scholar 

  67. Vaughan T, DelaBarre L, Snyder C, et al. (2006) 9.4T human MRI: preliminary results. Magn Reson Med 56(6):1274–1282. doi:10.1002/mrm.21073

    Article  PubMed  PubMed Central  Google Scholar 

  68. Vogl TJ, Paulus W, Fuchs A, Krafczyk S, Lissner J (1991) Influence of magnetic resonance imaging on evoked potentials and nerve conduction velocities in humans. Invest Radiol 26(5):432–437

    Article  CAS  PubMed  Google Scholar 

  69. Weintraub MI, Khoury A, Cole SP (2007) Biologic effects of 3 Tesla (T) MR imaging comparing traditional 1.5 T and 0.6 T in 1023 consecutive outpatients. J Neuroimaging 17(3):241–245. doi:10.1111/j.1552-6569.2007.00118.x

    Article  PubMed  Google Scholar 

  70. Weiss J, Herrick RC, Taber KH, Contant C, Plishker GA (1992) Bio-effects of high magnetic fields: a study using a simple animal model. Magn Reson Imaging 10(4):689–694

    Article  CAS  PubMed  Google Scholar 

  71. Yamaguchi-Sekino S, Nakai T, Imai S, Izawa S, Okuno T (2013) Occupational exposure levels of static magnetic field during routine MRI examination in 3 T MR system. Bioelectromagnetics . doi:10.1002/bem.21817

    PubMed  Google Scholar 

  72. Yamaguchi-Sekino S, Sekino M, Ueno S (2011) Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields. Magn Reson Med Sci 10(1):1–10

    Article  PubMed  Google Scholar 

  73. Yuh WT, Fisher DJ, Shields RK, Ehrhardt JC, Shellock FG (1992) Phantom limb pain induced in amputee by strong magnetic fields. J Magn Reson Imaging JMRI 2(2):221–223

    Article  CAS  PubMed  Google Scholar 

  74. Abart J, Eberhardt K, Fischer H, et al. (1997) Peripheral nerve stimulation by time-varying magnetic fields. J Comput Assist Tomogr 21(4):532–538

    Article  CAS  PubMed  Google Scholar 

  75. Alon L, Deniz CM, Brown R, Sodickson DK, Zhu Y (2013) Method for in situ characterization of radiofrequency heating in parallel transmit MRI. Magn Reson Med 69(5):1457–1465. doi:10.1002/mrm.24374

    Article  PubMed  PubMed Central  Google Scholar 

  76. Atalar E (2005) Radiofrequency safety for interventional MRI procedures. Acad Radiol 12(9):1149–1157. doi:10.1016/j.acra.2005.06.007

    Article  PubMed  Google Scholar 

  77. Boss A, Graf H, Berger A, et al. (2007) Tissue warming and regulatory responses induced by radio frequency energy deposition on a whole-body 3-Tesla magnetic resonance imager. J Magn Reson Imaging JMRI 26(5):1334–1339. doi:10.1002/jmri.21156

    Article  PubMed  Google Scholar 

  78. Bottomley PA (2008) Turning up the heat on MRI. J Am Coll Radiol JACR 5(7):853–855. doi:10.1016/j.jacr.2008.04.003

    Article  PubMed  Google Scholar 

  79. Bottomley PA, Edelstein WA (1981) Power deposition in whole-body NMR imaging. Med Phys 8(4):510–512

    Article  CAS  PubMed  Google Scholar 

  80. Budinger TF (1981) Nuclear magnetic resonance (NMR) in vivo studies: known thresholds for health effects. J Comput Assist Tomogr 5(6):800–811

    Article  CAS  PubMed  Google Scholar 

  81. Collins CM (2009) Numerical field calculations considering the human subject for engineering and safety assurance in MRI. NMR Biomed 22(9):919–926. doi:10.1002/nbm.1251

    Article  PubMed  PubMed Central  Google Scholar 

  82. de Greef M, Ipek O, Raaijmakers AJ, Crezee J, van den Berg CA (2013) Specific absorption rate intersubject variability in 7T parallel transmit MRI of the head. Magn Reson Med 69(5):1476–1485. doi:10.1002/mrm.24378

    Article  PubMed  Google Scholar 

  83. Drinkwater BL, Horvath SM (1979) Heat tolerance and aging. Med Sci Sports 11(1):49–55

    CAS  PubMed  Google Scholar 

  84. El-Sharkawy AM, Qian D, Bottomley PA, Edelstein WA (2012) A multichannel, real-time MRI RF power monitor for independent SAR determination. Med Phys 39(5):2334–2341. doi:10.1118/1.3700169

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gorny KR, Bernstein MA, Felmlee JP, et al. (2008) Calorimetric calibration of head coil SAR estimates displayed on a clinical MR scanner. Phys Med Biol 53(10):2565–2576. doi:10.1088/0031-9155/53/10/008

    Article  PubMed  Google Scholar 

  86. Gowland PA, De Wilde J (2008) Temperature increase in the fetus due to radio frequency exposure during magnetic resonance scanning. Phys Med Biol 53(21):L15–18. doi:10.1088/0031-9155/53/21/L01

    Article  CAS  PubMed  Google Scholar 

  87. Graesslin I, Homann H, Biederer S, et al. (2012) A specific absorption rate prediction concept for parallel transmission MR. Magn Reson Med 68(5):1664–1674. doi:10.1002/mrm.24138

    Article  PubMed  Google Scholar 

  88. Hand JW, Li Y, Hajnal JV (2010) Numerical study of RF exposure and the resulting temperature rise in the foetus during a magnetic resonance procedure. Phys Med Biol 55(4):913–930. doi:10.1088/0031-9155/55/4/001

    Article  CAS  PubMed  Google Scholar 

  89. Hand JW, Li Y, Thomas EL, Rutherford MA, Hajnal JV (2006) Prediction of specific absorption rate in mother and fetus associated with MRI examinations during pregnancy. Magn Reson Med 55(4):883–893. doi:10.1002/mrm.20824

    Article  CAS  PubMed  Google Scholar 

  90. International Commission on Non-Ionizing Radiation P (2004) Medical magnetic resonance (MR) procedures: protection of patients. Health Phys 87(2):197–216

    Article  Google Scholar 

  91. Israel M, Zaryabova V, Ivanova M (2013) Electromagnetic field occupational exposure: non-thermal vs. thermal effects. Electromagn Biol Med 32(2):145–154. doi:10.3109/15368378.2013.776349

    Article  CAS  PubMed  Google Scholar 

  92. Jauchem JR (1985) Effects of drugs on thermal responses to microwaves. Gen Pharmacol 16(4):307–310

    Article  CAS  PubMed  Google Scholar 

  93. Kangarlu A, Shellock FG, Chakeres DW (2003) 8.0-Tesla human MR system: temperature changes associated with radiofrequency-induced heating of a head phantom. J Magn Reson Imaging JMRI 17(2):220–226. doi:10.1002/jmri.10236

    Article  PubMed  Google Scholar 

  94. Kikuchi S, Saito K, Takahashi M, Ito K (2010) Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging. Phys Med Biol 55(8):2411–2426. doi:10.1088/0031-9155/55/8/018

    Article  PubMed  Google Scholar 

  95. Murbach M, Neufeld E, Kainz W, Pruessmann KP, Kuster N (2013) Whole-body and local RF absorption in human models as a function of anatomy and position within 1.5T MR body coil. Magn Reson Med . doi:10.1002/mrm.24690

    PubMed  Google Scholar 

  96. Neufeld E, Gosselin MC, Murbach M, et al. (2011) Analysis of the local worst-case SAR exposure caused by an MRI multi-transmit body coil in anatomical models of the human body. Phys Med Biol 56(15):4649–4659. doi:10.1088/0031-9155/56/15/002

    Article  PubMed  Google Scholar 

  97. Oh S, Webb AG, Neuberger T, Park B, Collins CM (2010) Experimental and numerical assessment of MRI-induced temperature change and SAR distributions in phantoms and in vivo. Magn Reson Med 63(1):218–223. doi:10.1002/mrm.22174

    PubMed  PubMed Central  Google Scholar 

  98. Rowell LB (1983) Cardiovascular aspects of human thermoregulation. Circ Res 52(4):367–379

    Article  CAS  PubMed  Google Scholar 

  99. Schaefer DJ (1998) Safety aspects of radiofrequency power deposition in magnetic resonance. Magn Reson Imaging Clin N Am 6(4):775–789

    CAS  PubMed  Google Scholar 

  100. Shellock FG (2000) Radiofrequency energy-induced heating during MR procedures: a review. J Magn Reson Imaging JMRI 12(1):30–36

    Article  CAS  PubMed  Google Scholar 

  101. Shellock FG, Crues JV (1987) Temperature, heart rate, and blood pressure changes associated with clinical MR imaging at 1.5 T. Radiology 163(1):259–262. doi:10.1148/radiology.163.1.3823445

    Article  CAS  PubMed  Google Scholar 

  102. Shellock FG, Crues JV (1988) Corneal temperature changes induced by high-field-strength MR imaging with a head coil. Radiology 167(3):809–811. doi:10.1148/radiology.167.3.3363146

    Article  CAS  PubMed  Google Scholar 

  103. Shellock FG, Crues JV (1988) Temperature changes caused by MR imaging of the brain with a head coil. AJNR Am J Neuroradiol 9(2):287–291

    CAS  PubMed  Google Scholar 

  104. Shellock FG, Rothman B, Sarti D (1990) Heating of the scrotum by high-field-strength MR imaging. AJR Am J Roentgenol 154(6):1229–1232. doi:10.2214/ajr.154.6.2110733

    Article  CAS  PubMed  Google Scholar 

  105. Shellock FG, Schaefer DJ, Crues JV (1989) Alterations in body and skin temperatures caused by magnetic resonance imaging: is the recommended exposure for radiofrequency radiation too conservative? Br J Radiol 62(742):904–909

    Article  CAS  PubMed  Google Scholar 

  106. Shellock FG, Schaefer DJ, Kanal E (1994) Physiologic responses to an MR imaging procedure performed at a specific absorption rate of 6.0 W/kg. Radiology 192(3):865–868. doi:10.1148/radiology.192.3.8058962

    Article  CAS  PubMed  Google Scholar 

  107. Shellock FG, Schatz CJ (1992) Increased corneal temperature caused by MR imaging of the eye with a dedicated local coil. Radiology 185(3):697–699. doi:10.1148/radiology.185.3.1438747

    Article  CAS  PubMed  Google Scholar 

  108. Shrivastava D, Hanson T, Kulesa J, et al. (2009) Radio frequency heating at 9.4T (400.2 MHz): in vivo thermoregulatory temperature response in swine. Magn Reson Med 62(4):888–895. doi:10.1002/mrm.22072

    Article  PubMed  PubMed Central  Google Scholar 

  109. Shrivastava D, Hanson T, Kulesa J, et al. (2011) Radiofrequency heating in porcine models with a “large” 32 cm internal diameter, 7 T (296 MHz) head coil. Magn Reson Med 66(1):255–263. doi:10.1002/mrm.22790

    Article  PubMed  PubMed Central  Google Scholar 

  110. Shrivastava D, Hanson T, Schlentz R, et al. (2008) Radiofrequency heating at 9.4T: in vivo temperature measurement results in swine. Magn Reson Med 59(1):73–78. doi:10.1002/mrm.21425

    Article  PubMed  PubMed Central  Google Scholar 

  111. Shuman WP, Haynor DR, Guy AW, et al. (1988) Superficial- and deep-tissue temperature increases in anesthetized dogs during exposure to high specific absorption rates in a 1.5-T MR imager. Radiology 167(2):551–554. doi:10.1148/radiology.167.2.3357971

    Article  CAS  PubMed  Google Scholar 

  112. Stuchly MA, Abrishamkar H, Strydom ML (2006) Numerical evaluation of radio frequency power deposition in human models during MRI. In: Annual international conference of the IEEE engineering in medicine and biology society, vol 1, pp 272–275. doi:10.1109/IEMBS.2006.259880

  113. van Lier AL, Kotte AN, Raaymakers BW, Lagendijk JJ, van den Berg CA (2012) Radiofrequency heating induced by 7T head MRI: thermal assessment using discrete vasculature or Pennes’ bioheat equation. J Magn Reson Imaging JMRI 35(4):795–803. doi:10.1002/jmri.22878

    Article  PubMed  Google Scholar 

  114. van Rhoon GC, Samaras T, Yarmolenko PS, et al. (2013) CEM43 degrees C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels? Eur Radiol 23(8):2215–2227. doi:10.1007/s00330-013-2825-y

    Article  PubMed  PubMed Central  Google Scholar 

  115. Voigt T, Homann H, Katscher U, Doessel O (2012) Patient-individual local SAR determination: in vivo measurements and numerical validation. Magn Reson Med 68(4):1117–1126. doi:10.1002/mrm.23322

    Article  CAS  PubMed  Google Scholar 

  116. Wang Z, Lin JC, Vaughan JT, Collins CM (2008) Consideration of physiological response in numerical models of temperature during MRI of the human head. J Magn Reson Imaging JMRI 28(5):1303–1308. doi:10.1002/jmri.21556

    Article  CAS  PubMed  Google Scholar 

  117. Wolf S, Diehl D, Gebhardt M, Mallow J, Speck O (2013) SAR simulations for high-field MRI: how much detail, effort, and accuracy is needed? Magn Reson Med 69(4):1157–1168. doi:10.1002/mrm.24329

    Article  CAS  PubMed  Google Scholar 

  118. Budinger TF, Fischer H, Hentschel D, Reinfelder HE, Schmitt F (1991) Physiological effects of fast oscillating magnetic field gradients. J Comput Assist Tomogr 15(6):909–914

    Article  CAS  PubMed  Google Scholar 

  119. Andreuccetti D, Contessa GM, Falsaperla R, et al. (2013) Weighted-peak assessment of occupational exposure due to MRI gradient fields and movements in a nonhomogeneous static magnetic field. Med Phys 40(1):011910. doi:10.1118/1.4771933

    Article  CAS  PubMed  Google Scholar 

  120. Bencsik M, Bowtell R, Bowley R (2007) Electric fields induced in the human body by time-varying magnetic field gradients in MRI: numerical calculations and correlation analysis. Phys Med Biol 52(9):2337–2353. doi:10.1088/0031-9155/52/9/001

    Article  PubMed  Google Scholar 

  121. Bourland JD, Nyenhuis JA, Schaefer DJ (1999) Physiologic effects of intense MR imaging gradient fields. Neuroimaging Clin N Am 9(2):363–377

    CAS  PubMed  Google Scholar 

  122. Cohen MS, Weisskoff RM, Rzedzian RR, Kantor HL (1990) Sensory stimulation by time-varying magnetic fields. Magn Reson Med 14(2):409–414

    Article  CAS  PubMed  Google Scholar 

  123. de Vocht F, Liket L, De Vocht A, et al. (2007) Exposure to alternating electromagnetic fields and effects on the visual and visuomotor systems. Br J Radiol 80(958):822–828. doi:10.1259/bjr/22263979

    Article  PubMed  Google Scholar 

  124. Doherty JU, Whitman GJ, Robinson MD, et al. (1985) Changes in cardiac excitability and vulnerability in NMR fields. Invest Radiol 20(2):129–135

    Article  CAS  PubMed  Google Scholar 

  125. Ehrhardt JC, Lin CS, Magnotta VA, Fisher DJ, Yuh WT (1997) Peripheral nerve stimulation in a whole-body echo-planar imaging system. J Magn Reson Imaging JMRI 7(2):405–409

    Article  CAS  PubMed  Google Scholar 

  126. Feldman RE, Hardy CJ, Aksel B, Schenck J, Chronik BA (2009) Experimental determination of human peripheral nerve stimulation thresholds in a 3-axis planar gradient system. Magn Reson Med 62(3):763–770. doi:10.1002/mrm.22050

    Article  PubMed  Google Scholar 

  127. Glover PM, Eldeghaidy S, Mistry TR, Gowland PA (2007) Measurement of visual evoked potential during and after periods of pulsed magnetic field exposure. J Magn Reson Imaging JMRI 26(5):1353–1356. doi:10.1002/jmri.21155

    Article  PubMed  Google Scholar 

  128. Ham CL, Engels JM, van de Wiel GT, Machielsen A (1997) Peripheral nerve stimulation during MRI: effects of high gradient amplitudes and switching rates. J Magn Reson Imaging JMRI 7(5):933–937

    Article  CAS  PubMed  Google Scholar 

  129. Kangarlu A, Tang L, Ibrahim TS (2007) Electric field measurements and computational modeling at ultrahigh-field MRI. Magn Reson Imaging 25(8):1222–1226. doi:10.1016/j.mri.2007.01.115

    Article  PubMed  Google Scholar 

  130. King KF, Schaefer DJ (2000) Spiral scan peripheral nerve stimulation. J Magn Reson Imaging JMRI 12(1):164–170

    Article  CAS  PubMed  Google Scholar 

  131. Li Y, Hand JW, Wills T, Hajnal JV (2007) Numerically-simulated induced electric field and current density within a human model located close to a z-gradient coil. J Magn Reson Imaging JMRI 26(5):1286–1295. doi:10.1002/jmri.21137

    Article  PubMed  Google Scholar 

  132. Mansfield P, Harvey PR (1993) Limits to neural stimulation in echo-planar imaging. Magn Reson Med 29(6):746–758

    Article  CAS  PubMed  Google Scholar 

  133. Schaefer DJ, Bourland JD, Nyenhuis JA (2000) Review of patient safety in time-varying gradient fields. J Magn Reson Imaging JMRI 12(1):20–29

    Article  CAS  PubMed  Google Scholar 

  134. Vogt FM, Ladd ME, Hunold P, et al. (2004) Increased time rate of change of gradient fields: effect on peripheral nerve stimulation at clinical MR imaging. Radiology 233(2):548–554. doi:10.1148/radiol.2332030428

    Article  PubMed  Google Scholar 

  135. Weinberg IN, Stepanov PY, Fricke ST, et al. (2012) Increasing the oscillation frequency of strong magnetic fields above 101 kHz significantly raises peripheral nerve excitation thresholds. Med Phys 39(5):2578–2583. doi:10.1118/1.3702775

    Article  PubMed  PubMed Central  Google Scholar 

  136. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health, Guidance for Industry and FDA Staff (2003) Criteria for significant risk investigations of magnetic resonance diagnostic devices.

  137. U.S. Department of Health and Human Services, FDA, CDRH, Guidance for Industry and FDA Staff (2003) Criteria for significant risk investigations of magnetic resonance diagnostic devices.

  138. ACR MR Safety. http://www.acr.org/quality-safety/radiology-safety/mr-safety. Accessed 1 Mar 2016

  139. Sammet S, Koch RM, Aguila F, Knopp MV (2010) Residual magnetism in an MRI suite after field-rampdown: what are the issues and experiences? J Magn Reson Imaging JMRI 31(5):1272–1276. doi:10.1002/jmri.22141

    Article  PubMed  Google Scholar 

  140. Collins CM, Wang Z (2011) Calculation of radiofrequency electromagnetic fields and their effects in MRI of human subjects. Magn Reson Med 65(5):1470–1482. doi:10.1002/mrm.22845

    Article  PubMed  PubMed Central  Google Scholar 

  141. Machata AM, Willschke H, Kabon B, Prayer D, Marhofer P (2009) Effect of brain magnetic resonance imaging on body core temperature in sedated infants and children. Br J Anaesth 102(3):385–389. doi:10.1093/bja/aen388

    Article  PubMed  Google Scholar 

  142. Woods TO (2007) Standards for medical devices in MRI: present and future. J Magn Reson Imaging JMRI 26(5):1186–1189. doi:10.1002/jmri.21140

    Article  PubMed  Google Scholar 

  143. ASTM F2119-07 (2013) Standard Test Method for Evaluation of MR Image Artifacts from Passive Implants. West Conshohocken: ASTM International

  144. Kanal E, Shellock FG, Talagala L (1990) Safety considerations in MR imaging. Radiology 176(3):593–606. doi:10.1148/radiology.176.3.2202008

    Article  CAS  PubMed  Google Scholar 

  145. IEC 60 601-2-33 (2015) Medical electrical equipment—Part 2: Particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis

  146. International Electrotechnical Commission (IEC), Medical Electrical Equipment (2002) Particular requirements for the safety of magnetic resonance equipment for medical diagnosis, International Standard IEC 60601-2-33

  147. Guidelines to Prevent Excessive Heating and Burns Associated with Magnetic Resonance Procedures developed by the Institute for Magnetic Resonance Safety, Education, and Research (IMRSER). http://www.mrisafety.com/SafetyInfov.asp?SafetyInfoID=166. Accessed 1 Mar 2016

  148. Kangarlu A, Ibrahim TS, Shellock FG (2005) Effects of coil dimensions and field polarization on RF heating inside a head phantom. Magn Reson Imaging 23(1):53–60. doi:10.1016/j.mri.2004.11.007

    Article  PubMed  Google Scholar 

  149. Hassepass F, Stabenau V, Arndt S, et al. (2014) Magnet dislocation: an increasing and serious complication following MRI in patients with cochlear implants. RoFo 186(7):680–685. doi:10.1055/s-0033-1356238

    Article  CAS  PubMed  Google Scholar 

  150. ACR_SPR Practice parameter for the safe and optimal performance of fetal magnetic resonance imaging (MRI) (2015) Revised 2015 (Resolution 11). http://www.acr.org/~/media/CB384A65345F402083639E6756CE513F.pdf. Accessed 1 Mar 2016

  151. Baker PN, Johnson IR, Harvey PR, Gowland PA, Mansfield P (1994) A three-year follow-up of children imaged in utero with echo-planar magnetic resonance. Am J Obstet Gynecol 170(1 Pt 1):32–33

    Article  CAS  PubMed  Google Scholar 

  152. Chew S, Ahmadi A, Goh PS, Foong LC (2001) The effects of 1.5T magnetic resonance imaging on early murine in vitro embryo development. J Magn Reson Imaging JMRI 13(3):417–420

    Article  CAS  PubMed  Google Scholar 

  153. Clements H, Duncan KR, Fielding K, et al. (2000) Infants exposed to MRI in utero have a normal paediatric assessment at 9 months of age. Br J Radiol 73(866):190–194. doi:10.1259/bjr.73.866.10884733

    Article  CAS  PubMed  Google Scholar 

  154. American College of Radiology (ACR) (2015) Manual on Contrast Media, Version 10.1. http://www.acr.org/quality-safety/resources/~/media/37D84428BF1D4E1B9A3A2918DA9E27A3.pdf. Accessed 1 Mar 2016

  155. Gilk T, Kanal E (2013) Interrelating sentinel event alert #38 with the ACR guidance document on MR safe practices: 2013. An MRI accreditation safety review tool. J Magn Reson Imaging JMRI 37(3):531–543. doi:10.1002/jmri.24027

    Article  PubMed  Google Scholar 

  156. Thomsen HS (2006) Contrast media: safety issues and ESUR guidelines. Medical radiology. Berlin: Springer

    Book  Google Scholar 

  157. Behra-Miellet J, Gressier B, Brunet C, et al. (1996) Free gadolinium and gadodiamide, a gadolinium chelate used in magnetic resonance imaging: evaluation of their in vitro effects on human neutrophil viability. Methods Find Exp Clin Pharmacol 18(7):437–442

    CAS  PubMed  Google Scholar 

  158. Mendoza FA, Artlett CM, Sandorfi N, et al. (2006) Description of 12 cases of nephrogenic fibrosing dermopathy and review of the literature. Semin Arthritis Rheum 35(4):238–249. doi:10.1016/j.semarthrit.2005.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  159. The International Center for Nephrogenic Systemic Fibrosis Research (ICNSFR) by Cowper SE. http://www.icnfdr.org. Accessed 1 Mar 2016

  160. Food and Drug Administration (FDA) Information on Gadolinium-Based Contrast Agents (2015) http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm142882.htm. Accessed 1 Mar 2016

  161. Brown JJ, Hynes MR, Wible JH Jr (2007) Measurement of serum calcium concentration after administration of four gadolinium-based contrast agents to human volunteers. AJR Am J Roentgenol 189(6):1539–1544. doi:10.2214/AJR.07.2464

    Article  PubMed  Google Scholar 

  162. Dillman JR, Ellis JH, Cohan RH, et al. (2011) Safety of gadolinium-based contrast material in sickle cell disease. J Magn Reson Imaging JMRI 34(4):917–920. doi:10.1002/jmri.22666

    Article  PubMed  Google Scholar 

  163. Evenepoel P, Zeegers M, Segaert S, et al. (2004) Nephrogenic fibrosing dermopathy: a novel, disabling disorder in patients with renal failure. Nephrol Dial Transplant 19(2):469–473

    Article  PubMed  Google Scholar 

  164. Grobner T (2006) Gadolinium–a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21(4):1104–1108. doi:10.1093/ndt/gfk062

    Article  CAS  PubMed  Google Scholar 

  165. Kanal E (1992) An overview of electromagnetic safety considerations associated with magnetic resonance imaging. Ann N Y Acad Sci 649:204–224

    Article  CAS  PubMed  Google Scholar 

  166. Marckmann P, Skov L, Rossen K, et al. (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol JASN 17(9):2359–2362. doi:10.1681/ASN.2006060601

    Article  PubMed  Google Scholar 

  167. Marckmann P, Skov L, Rossen K, Heaf JG, Thomsen HS (2007) Case-control study of gadodiamide-related nephrogenic systemic fibrosis. Nephrol Dial Transpl 22(11):3174–3178. doi:10.1093/ndt/gfm261

    Article  CAS  Google Scholar 

  168. Umans H, Haramati N, Flusser G (2000) The diagnostic role of gadolinium enhanced MRI in distinguishing between acute medullary bone infarct and osteomyelitis. Magn Reson Imaging 18(3):255–262

    Article  CAS  PubMed  Google Scholar 

  169. Westwood MA, Shah F, Anderson LJ, et al. (2007) Myocardial tissue characterization and the role of chronic anemia in sickle cell cardiomyopathy. J Magn Reson Imaging JMRI 26(3):564–568. doi:10.1002/jmri.21018

    Article  PubMed  Google Scholar 

  170. Zimmerman RA (2005) MRI/MRA evaluation of sickle cell disease of the brain. Pediatr Radiol 35(3):249–257. doi:10.1007/s00247-005-1420-z

    Article  PubMed  Google Scholar 

  171. Thorpe S, Salkovskis PM, Dittner A (2008) Claustrophobia in MRI: the role of cognitions. Magn Reson Imaging 26(8):1081–1088. doi:10.1016/j.mri.2008.01.022

    Article  PubMed  Google Scholar 

  172. Conquering claustrophobia during your MRI (2002) Johns Hopkins Med Lett Health After 50 14(9):3

  173. Dantendorfer K, Wimberger D, Katschnig H, Imhoff H (1991) Claustrophobia in MRI scanners. Lancet 338(8769):761–762

    Article  CAS  PubMed  Google Scholar 

  174. Murphy KJ, Brunberg JA (1997) Adult claustrophobia, anxiety and sedation in MRI. Magn Reson Imaging 15(1):51–54

    Article  CAS  PubMed  Google Scholar 

  175. Phelps LA (1990) MRI and claustrophobia. Am Fam Physician 42(4):930

    CAS  PubMed  Google Scholar 

  176. Wahba H (1995) Minimizing claustrophobia in an MRI scanner. Nursing 25(7):32C–32D

    CAS  PubMed  Google Scholar 

  177. Serafini G, Ongaro L, Mori A, et al. (2005) Anesthesia for MRI in the paediatric patient. Minerva Anestesiol 71(6):361–366

    CAS  PubMed  Google Scholar 

  178. Pilling D, Abernethy L, Wright N, Carty H (2001) Sedation, safety and MRI. Br J Radiol 74(885):875–876. doi:10.1259/bjr.74.885.740875b

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Steffen Sammet, M.D., Ph.D., DABR, DABMRS, FAMP was funded by the National Institute of Neurological Disorders and Stroke (R25NS080949), National Cancer Institute Education and Career Development program R25 Cancer Nanotechnology in Imaging and Radiotherapy (R25CA132822), the Cancer Research Foundation, the University of Chicago Comprehensive Cancer Center, and Philips Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Sammet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sammet, S. Magnetic resonance safety. Abdom Radiol 41, 444–451 (2016). https://doi.org/10.1007/s00261-016-0680-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-016-0680-4

Keywords

Navigation