Skip to main content

Advertisement

Log in

Imaging proliferation of 18F-FLT PET/CT correlated with the expression of microvessel density of tumour tissue in non-small-cell lung cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to analyse the correlation between 18F-labelled 3′-deoxy-3′-fluorothymidine (18F-FLT) PET/CT proliferation images and tumour angiogenesis as reflected by intratumoral microvessel density (MVD) in non-small-cell lung cancer (NSCLC) to provide a noninvasive method to predict the response to antiangiogenic therapy.

Methods

A total of 68 patients with proven or suspected NSCLC underwent FLT PET/CT scans followed by surgery. PET/CT images were compared with pathology. Tumour proliferation was evaluated in terms of a Ki-67 labelling index (Ki-67 LI). MVD was determined using an anti-CD31 mAb (CD31-MVD), anti-CD34 mAb (CD34-MVD) and an anti-CD105 mAb (CD105-MVD) for each resected tumour.

Results

Tumour FLT maximum standardized uptake values (SUVmax) were significantly correlated with the Ki-67 LI and CD105-MVD (r = 0.550 and 0.633, P = 0.000 and 0.000, respectively), but were only marginally correlated with the CD31-MVD and CD34-MVD (r = 0.228 and 0.235, P = 0.062 and 0.054, respectively). The FLT PET false-negative patients had a longer median survival time than the FLT PET true-positive patients (log rank test, P = 0.012). The patients with a lower CD105-MVD had a longer median survival time than those with a higher CD105-MVD (P = 0.046), while patients with a lower CD31-MVD and CD34-MVD did not have a longer median survival time than those with a higher value (P = 0.438 and 0.187, respectively).

Conclusion

FLT PET/CT imaging correlated with tumour angiogenesis as reflected by CD105-MVD and prognosis, and may be helpful in assessing antiangiogenic therapy of NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–64.

    Article  PubMed  CAS  Google Scholar 

  2. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29:15–8.

    PubMed  CAS  Google Scholar 

  3. Weidner N. Tumoural vascularity as a prognostic factor in cancer patients: the evidence continues to grow. J Pathol. 1998;184:119–22.

    Article  PubMed  CAS  Google Scholar 

  4. O’Byrne KJ, Koukourakis MI, Giatromanolaki A, Cox G, Turley H, Steward WP, et al. Vascular endothelial growth factor, platelet-derived endothelial cell growth factor and angiogenesis in non-small-cell lung cancer. Br J Cancer. 2000;82:1427–32.

    Article  PubMed  Google Scholar 

  5. Liao M, Wang H, Lin Z, Feng J, Zhu D. Vascular endothelial growth factor and other biological predictors related to the postoperative survival rate on non-small cell lung cancer. Lung Cancer. 2001;33:125–32.

    Article  PubMed  CAS  Google Scholar 

  6. Siemann DW, Bibby MC, Dark GG, Dicker AP, Eskens FA, Horsman MR, et al. Differentiation and definition of vascular-targeted therapies. Clin Cancer Res. 2005;11:416–20.

    PubMed  CAS  Google Scholar 

  7. Stroobants S, Goeminne J, Seegers M, Dimitrijevic S, Dupont P, Nuyts J, et al. 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer. 2003;39:2012–20.

    Article  PubMed  CAS  Google Scholar 

  8. Shim SS, Lee KS, Kim BT, Chung MJ, Lee EJ, Han J, et al. Non-small cell lung cancer: prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging. Radiology. 2005;236:1011–9.

    Article  PubMed  Google Scholar 

  9. Yang W, Fu Z, Yu J, Yuan S, Zhang B, Li D, et al. Value of PET/CT versus enhanced CT for locoregional lymph nodes in non-small cell lung cancer. Lung Cancer. 2008;61:35–43.

    Article  PubMed  Google Scholar 

  10. Mier W, Haberkorn U, Eisenhut M. [18F]FLT: portrait of a proliferation marker. Eur J Nucl Med Mol Imaging. 2002;29:165–9.

    Article  PubMed  CAS  Google Scholar 

  11. Vesselle H, Grierson J, Muzi M, Pugsley JM, Schmidt RA, Rabinowitz P, et al. In vivo validation of 3′deoxy-3′-[(18)F]fluorothymidine ([(18)F]FLT) as a proliferation imaging tracer in humans: correlation of [(18)F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res. 2002;8:3315–23.

    PubMed  CAS  Google Scholar 

  12. Buck AK, Schirrmeister H, Hetzel M, Von Der Heide M, Halter G, Glatting G, et al. 3-deoxy-3-[(18)F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res. 2002;62:3331–4.

    PubMed  CAS  Google Scholar 

  13. Ullrich R, Backes H, Li H, Kracht L, Miletic H, Kesper K, et al. Glioma proliferation as assessed by 3′-fluoro-3′-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res. 2008;14:2049–55.

    Article  PubMed  CAS  Google Scholar 

  14. Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R, et al. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol. 2007;2:706–14.

    Article  PubMed  Google Scholar 

  15. Yamamoto Y, Nishiyama Y, Kimura N, Ishikawa S, Okuda M, Bandoh S, et al. Comparison of (18)F-FLT PET and (18)F-FDG PET for preoperative staging in non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2008;35:236–45.

    Article  PubMed  CAS  Google Scholar 

  16. Tanaka F, Otake Y, Yanagihara K, Kawano Y, Miyahara R, Li M, et al. Evaluation of angiogenesis in non-small cell lung cancer: comparison between anti-CD34 antibody and anti-CD105 antibody. Clin Cancer Res. 2001;7:3410–5.

    PubMed  CAS  Google Scholar 

  17. Tian J, Yang X, Yu L, Chen P, Xin J, Ma L, et al. A multicenter clinical trial on the diagnostic value of dual-tracer PET/CT in pulmonary lesions using 3′-deoxy-3′-18F-fluorothymidine and 18F-FDG. J Nucl Med. 2008;49:186–94.

    Article  PubMed  Google Scholar 

  18. Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med. 2002;43:1210–7.

    PubMed  CAS  Google Scholar 

  19. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182:311–22.

    Article  PubMed  CAS  Google Scholar 

  20. Martin B, Paesmans M, Mascaux C, Berghmans T, Lothaire P, Meert AP, et al. Ki-67 expression and patients survival in lung cancer: systematic review of the literature with meta-analysis. Br J Cancer. 2004;91:2018–25.

    Article  PubMed  CAS  Google Scholar 

  21. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst. 1992;84:1875–87.

    Article  PubMed  CAS  Google Scholar 

  22. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma. N Engl J Med. 1991;324:1–8.

    Article  PubMed  CAS  Google Scholar 

  23. Meert AP, Paesmans M, Martin B, Delmotte P, Berghmans T, Verdebout JM, et al. The role of microvessel density on the survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer. 2002;87:694–701.

    Article  PubMed  Google Scholar 

  24. Vermeulen PB, Gasparini G, Fox SB, Toi M, Martin L, McCulloch P, et al. Quantification of angiogenesis in solid human tumours: an international consensus on the methodology and criteria of evaluation. Eur J Cancer. 1996;32A:2474–84.

    Article  PubMed  CAS  Google Scholar 

  25. Guo J, Higashi K, Ueda Y, Oguchi M, Takegami T, Toga H, et al. Microvessel density: correlation with 18F-FDG uptake and prognostic impact in lung adenocarcinomas. J Nucl Med. 2006;47:419–25.

    PubMed  CAS  Google Scholar 

  26. Giatromanolaki A, Koukourakis MI, Theodossiou D, Barbatis K, O'Byrne K, Harris AL, et al. Comparative evaluation of angiogenesis assessment with anti-factor-VIII and anti-CD31 immunostaining in non-small cell lung cancer. Clin Cancer Res. 1997;3(12 Pt 1):2485–92.

    PubMed  CAS  Google Scholar 

  27. Kumar P, Wang JM, Bernabeu C. CD105 and angiogenesis. J Pathol. 1996;178:363–6.

    Article  PubMed  CAS  Google Scholar 

  28. Kumar S, Ghellal A, Li C, Byrne G, Haboubi N, Wang JM, et al. Breast carcinoma: vascular density determined using CD105 antibody correlates with tumor prognosis. Cancer Res. 1999;59:856–61.

    PubMed  CAS  Google Scholar 

  29. Miller DW, Graulich W, Karges B, Stahl S, Ernst M, Ramaswamy A, et al. Elevated expression of endoglin, a component of the TGF-beta-receptor complex, correlates with proliferation of tumor endothelial cells. Int J Cancer. 1999;81:568–72.

    Article  PubMed  CAS  Google Scholar 

  30. Wikström P, Lissbrant IF, Stattin P, Egevad L, Bergh A. Endoglin (CD105) is expressed on immature blood vessels and is a marker for survival in prostate cancer. Prostate. 2002;51:268–75.

    Article  PubMed  Google Scholar 

  31. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med. 2003;349:427–34.

    Article  PubMed  CAS  Google Scholar 

  32. Pennell NA, Lynch Jr TJ. Combined inhibition of the VEGFR and EGFR signaling pathways in the treatment of NSCLC. Oncologist. 2009;14:399–411.

    Article  PubMed  CAS  Google Scholar 

  33. Giaccone G. The potential of antiangiogenic therapy in non-small cell lung cancer. Clin Cancer Res. 2007;13:1961–70.

    Article  PubMed  CAS  Google Scholar 

  34. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–45.

    Article  PubMed  Google Scholar 

  35. Hoetjes NJ, van Velden FH, Hoekstra OS, Hoekstra CJ, Krak NC, Lammertsma AA, et al. Partial volume correction strategies for quantitative FDG PET in oncology. Eur J Nucl Med Mol Imaging. 2010;37:1679–87.

    Article  PubMed  Google Scholar 

  36. Pottgen C, Levegrun S, Theegarten D, Marnitz S, Grehl S, Pink R, et al. Value of 18F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography in non-small-cell lung cancer for prediction of pathologic response and times to relapse after neoadjuvant chemoradiotherapy. Clin Cancer Res. 2006;12:97–106.

    Article  PubMed  Google Scholar 

  37. Hickeson M, Yun M, Matthies A, Zhuang H, Adam LE, Lacorte L, et al. Use of a corrected standardized uptake value based on the lesion size on CT permits accurate characterization of lung nodules on FDG-PET. Eur J Nucl Med Mol Imaging. 2002;29:1639–47.

    Article  PubMed  Google Scholar 

  38. Vesselle H, Schmidt RA, Pugsley JM, Li M, Kohlmyer SG, Vallires E, et al. Lung cancer proliferation correlates with F-18 fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res. 2000;6:3837–44.

    PubMed  CAS  Google Scholar 

  39. Jaskowiak CJ, Bianco JA, Perlman SB, Fine JP. Influence of reconstruction iterations on 18F-FDG PET/CT standardized uptake values. J Nucl Med. 2005;46:424–8.

    PubMed  Google Scholar 

Download references

Acknowledgments

The corresponding author states that the authors had full access to the data and will vouch for the integrity of the data analysis. This work was supported by the Research Fund of Shandong Provincial Health Bureau of China (grant 2009HZ088), and by the Research Fund of Shandong Cancer Hospital and Institute (No. 2009-11).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinming Yu.

Additional information

Wenfeng Yang and Yongming Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Zhang, Y., Fu, Z. et al. Imaging proliferation of 18F-FLT PET/CT correlated with the expression of microvessel density of tumour tissue in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 39, 1289–1296 (2012). https://doi.org/10.1007/s00259-012-2126-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2126-8

Keywords

Navigation