Skip to main content

Advertisement

Log in

Cost-effectiveness analysis of FET PET-guided target selection for the diagnosis of gliomas

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Several diagnostic trials have indicated that the combined use of 18F-fluoroethyl-l-tyrosine (FET) PET and MRI may be superior to MRI alone in selecting the biopsy site for the diagnosis of gliomas. We estimated the cost-effectiveness of the use of amino acid PET compared to MRI alone from the perspective of the German statutory health insurance.

Methods

To evaluate the incremental cost-effectiveness of the use of amino acid PET, a decision tree model was built. The effectiveness of FET PET was determined by the probability of a correct diagnosis. Costs were estimated for a baseline scenario and for a more expensive scenario in which disease severity was considered. The robustness of the results was tested using deterministic and probabilistic sensitivity analyses.

Results

The combined use of PET and MRI resulted in an increase of 18.5% in the likelihood of a correct diagnosis. The incremental cost-effectiveness ratio for one additional correct diagnosis using FET PET was €6,405 for the baseline scenario and €9,114 for the scenario based on higher disease severity. The probabilistic sensitivity analysis confirmed the robustness of the results.

Conclusion

The model indicates that the use of amino acid PET may be cost-effective in patients with glioma. As a result of several limitations in the data used for the model, further studies are needed to confirm the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Floeth FW, Pauleit D, Sabel M, Stoffels G, Reifenberger G, Riemenschneider MJ, et al. Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med. 2007;48(4):519–27.

    Article  PubMed  CAS  Google Scholar 

  2. Deb P, Sharma MC, Mahapatra AK, Agarwal D, Sarkar C. Glioblastoma multiforme with long term survival. Neurol India. 2005;53(3):329–32.

    Article  PubMed  Google Scholar 

  3. Walid MS, Smisson III HF, Robinson Jr JS. Long-term survival after glioblastoma multiforme. South Med J. 2008;101(9):971–2.

    Article  PubMed  Google Scholar 

  4. Scoccianti S, Magrini SM, Ricardi U, Detti B, Buglione M, Sotti G, et al. Patterns of care and survival in a retrospective analysis of 1059 patients with glioblastoma multiforme treated between 2002 and 2007: a multicenter study by the Central Nervous System Study Group of Airo (Italian Association of Radiation Oncology). Neurosurgery. 2010;67(2):446–58.

    Article  PubMed  Google Scholar 

  5. Grant R. Overview: brain tumour diagnosis and management/Royal College of Physicians guidelines. J Neurol Neurosurg Psychiatry. 2004;75 Suppl 2:ii18–23.

    Article  PubMed  Google Scholar 

  6. Schneider T, Mawrin C, Scherlach C, Skalej M, Firsching R. Gliomas in adults. Dtsch Arztebl Int. 2010;107(45):799–808.

    PubMed  Google Scholar 

  7. Stupp R, Roila F. Malignant glioma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2008;19 Suppl 2:ii83–5.

    Article  PubMed  Google Scholar 

  8. Kaufman HH, Catalano Jr LW. Diagnostic brain biopsy: a series of 50 cases and a review. Neurosurgery. 1979;4(2):129–36.

    Article  PubMed  CAS  Google Scholar 

  9. Sawyer J, Ellner J, Ransohoff DF. To biopsy or not to biopsy in suspected herpes simplex encephalitis: a quantitative analysis. Med Decis Mak. 1988;8(2):95–101.

    Article  CAS  Google Scholar 

  10. DeAngelis LM. Brain tumors. N Engl J Med. 2001;344(2):114–23.

    Article  PubMed  CAS  Google Scholar 

  11. Chen W. Clinical applications of PET in brain tumors. J Nucl Med. 2007;48(9):1468–81.

    Article  PubMed  Google Scholar 

  12. Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, et al. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2006;33(3):287–94.

    Article  PubMed  CAS  Google Scholar 

  13. Pirotte B, Goldman S, Massager N, David P, Wikler D, Vandesteene A, et al. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med. 2004;45(8):1293–8.

    PubMed  CAS  Google Scholar 

  14. Langen KJ, Floeth FW, Stoffels G, Hamacher K, Coenen HH, Pauleit D. Improved diagnostics of cerebral gliomas using FET PET. Z Med Phys. 2007;17(4):237–41.

    Article  PubMed  Google Scholar 

  15. Goldman S, Levivier M, Pirotte B, Brucher JM, Wikler D, Damhaut P, et al. Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med. 1997;38(9):1459–62.

    PubMed  CAS  Google Scholar 

  16. Kracht LW, Miletic H, Busch S, Jacobs AH, Voges J, Hoevels M, et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res. 2004;10(21):7163–70.

    Article  PubMed  CAS  Google Scholar 

  17. Miwa K, Shinoda J, Yano H, Okumura A, Iwama T, Nakashima T, et al. Discrepancy between lesion distributions on methionine PET and MR images in patients with glioblastoma multiforme: insight from a PET and MR fusion image study. J Neurol Neurosurg Psychiatry. 2004;75(10):1457–62.

    Article  PubMed  CAS  Google Scholar 

  18. Muragaki Y, Chernov M, Maruyama T, Ochiai T, Taira T, Kubo O, et al. Low-grade glioma on stereotactic biopsy: how often is the diagnosis accurate? Minim Invasive Neurosurg. 2008;51(5):275–9.

    Article  PubMed  CAS  Google Scholar 

  19. Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Müller HW, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain. 2005;128(Pt 3):678–87.

    Article  PubMed  Google Scholar 

  20. Pirotte B, Goldman S, Bidaut LM, Luxen A, Stanus E, Brucher JM, et al. Use of positron emission tomography (PET) in stereotactic conditions for brain biopsy. Acta Neurochir (Wien). 1995;134(1–2):79–82.

    Article  CAS  Google Scholar 

  21. Langen KJ, Bartenstein P, Boecker H, Brust P, Coenen HH, Drzezga A, et al. German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids. Nuklearmedizin. 2011;50(4):167–73.

    Article  PubMed  Google Scholar 

  22. Vander BT, Asenbaum S, Bartenstein P, Halldin C, Kapucu O, Van Laere K, et al. EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur J Nucl Med Mol Imaging. 2006;33(11):1374–80.

    Article  Google Scholar 

  23. Heinzel A, Stock S, Langen KJ, Müller D. Cost-effectiveness analysis of amino acid PET guided surgery for supratentorial high-grade gliomas. J Nucl Med. 2011; in Press.

  24. Doubilet P, Begg CB, Weinstein MC, Braun P, McNeil BJ. Probabilistic sensitivity analysis using Monte Carlo simulation. A practical approach. Med Decis Mak. 1985;5(2):157–77.

    Article  CAS  Google Scholar 

  25. Meltzer MI, Dennis DT, Orloski KA. The cost effectiveness of vaccinating against Lyme disease. Emerg Infect Dis. 1999;5(3):321–8.

    Article  PubMed  CAS  Google Scholar 

  26. Burgos JL, Gaebler JA, Strathdee SA, Lozada R, Staines H, Patterson TL. Cost-effectiveness of an intervention to reduce HIV/STI incidence and promote condom use among female sex workers in the Mexico-US border region. PLoS One. 2010;5(6):e11413.

    Article  PubMed  Google Scholar 

  27. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  PubMed  CAS  Google Scholar 

  28. Uyl-de Groot CA, Stupp R, van der Bent M. Cost-effectiveness of temozolomide for the treatment of newly diagnosed glioblastoma multiforme. Expert Rev Pharmacoecon Outcomes Res. 2009;9(3):235–41.

    Article  PubMed  Google Scholar 

  29. Plotkin M, Blechschmidt C, Auf G, Nyuyki F, Geworski L, Denecke T, et al. Comparison of F-18 FET-PET with F-18 FDG-PET for biopsy planning of non-contrast-enhancing gliomas. Eur Radiol. 2010;20(10):2496–502.

    Article  PubMed  Google Scholar 

  30. Ginsberg LE, Fuller GN, Hashmi M, Leeds NE, Schomer DF. The significance of lack of MR contrast enhancement of supratentorial brain tumors in adults: histopathological evaluation of a series. Surg Neurol. 1998;49(4):436–40.

    Article  PubMed  CAS  Google Scholar 

  31. Temple R, Ellenberg SS. Placebo-controlled trials and active-control trials in the evaluation of new treatments. Part 1: ethical and scientific issues. Ann Intern Med. 2000;133(6):455–63.

    PubMed  CAS  Google Scholar 

  32. Miller FG, Brody H. What makes placebo-controlled trials unethical? Am J Bioeth. 2002;2(2):3–9.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Heinzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinzel, A., Stock, S., Langen, KJ. et al. Cost-effectiveness analysis of FET PET-guided target selection for the diagnosis of gliomas. Eur J Nucl Med Mol Imaging 39, 1089–1096 (2012). https://doi.org/10.1007/s00259-012-2093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2093-0

Keywords

Navigation