Skip to main content

Advertisement

Log in

Clinical impact of 11C-methionine PET on expected management of patients with brain neoplasm

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

An Erratum to this article was published on 27 January 2010

Abstract

Purpose

We retrospectively examined the clinical efficacy of 11C-methionine positron emission tomography (11C-MET PET) in patients with brain neoplasm, especially whether the 11C-MET PET changed the clinical management and whether the change was beneficial or detrimental.

Methods

This study reviewed 89 11C-MET PET scans for 80 patients (20 scans for initial diagnosis of brain tumor and 69 scans for differentiating tumor recurrence from radiation necrosis). Final diagnosis and the effect on the intended management were obtained from the questionnaire to the referring physicians or directly from the medical records. The diagnostic sensitivity, specificity, and accuracy for the 11C-MET PET were evaluated. Regarding the management impact, the rate of scans that caused changes in intended management was also evaluated. Moreover, the occurrence of scans having detrimental diagnostic impact (DDI) and beneficial diagnostic impact (BDI) were evaluated.

Results

Sensitivity, specificity, and accuracy of 11C-MET PET was 87.8, 80.0, and 85.9%. The intended management was changed in 50.0% of the scans. DDI and BDI were observed in 4.3 and 36.2% of the total relevant scans, respectively.

Conclusion

11C-MET PET can provide useful information in initial diagnosis and differentiating tumor recurrence from radiation necrosis. The intended management was changed in half of the scans. Since a few cases did not receive the requisite treatment due to false-negative results of 11C-MET PET, management decision should be made carefully, especially in the case of a negative scan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nojiri T, Nariai T, Aoyagi M, Senda M, Ishii K, Ishiwata K, et al. Contributions of biological tumor parameters to the incorporation rate of L: -[methyl-11C] methionine into astrocytomas and oligodendrogliomas. J Neurooncol. 2009;93:233–41.

    Article  CAS  PubMed  Google Scholar 

  2. Kato T, Shinoda J, Oka N, Miwa K, Nakayama N, Yano H, et al. Analysis of 11C-methionine uptake in low-grade gliomas and correlation with proliferative activity. AJNR Am J Neuroradiol. 2008;29:1867–71.

    Article  CAS  PubMed  Google Scholar 

  3. Kracht LW, Miletic H, Busch S, Jacobs AH, Voges J, Hoevels M, et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res. 2004;10:7163–70.

    Article  CAS  PubMed  Google Scholar 

  4. Braun V, Dempf S, Weller R, Reske SN, Schachenmayr W, Richter HP. Cranial neuronavigation with direct integration of 11C methionine positron emission tomography (PET) data - results of a pilot study in 32 surgical cases. Acta Neurochir (Wien). 2002;144:777–82.

    Article  CAS  Google Scholar 

  5. Herholz K, Holzer T, Bauer B, Schroder R, Voges J, Ernestus RI, et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology. 1998;50:1316–22.

    CAS  PubMed  Google Scholar 

  6. Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T, et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med. 2008;49:694–9.

    Article  PubMed  Google Scholar 

  7. Tsuyuguchi N, Takami T, Sunada I, Iwai Y, Yamanaka K, Tanaka K, et al. Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery–in malignant glioma. Ann Nucl Med. 2004;18:291–6.

    Article  CAS  PubMed  Google Scholar 

  8. Tsuyuguchi N, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Takami T, et al. Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg. 2003;98:1056–64.

    Article  PubMed  Google Scholar 

  9. De Witte O, Goldberg I, Wikler D, Rorive S, Damhaut P, Monclus M, et al. Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg. 2001;95:746–50.

    Article  PubMed  Google Scholar 

  10. Ribom D, Eriksson A, Hartman M, Engler H, Nilsson A, Langstrom B, et al. Positron emission tomography 11C-methionine and survival in patients with low-grade gliomas. Cancer. 2001;92:1541–9.

    Article  CAS  PubMed  Google Scholar 

  11. Matsuo M, Miwa K, Shinoda J, Kako N, Nishibori H, Sakurai K, et al. Target definition by C11-methionine-PET for the radiotherapy of brain metastases. Int J Radiat Oncol Biol Phys. 2009;74:714–22.

    CAS  PubMed  Google Scholar 

  12. Coope DJ, Cizek J, Eggers C, Vollmar S, Heiss WD, Herholz K. Evaluation of primary brain tumors using 11C-methionine PET with reference to a normal methionine uptake map. J Nucl Med. 2007;48:1971–80.

    Article  CAS  PubMed  Google Scholar 

  13. Pirotte B, Goldman S, Dewitte O, Massager N, Wikler D, Lefranc F, et al. Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures. J Neurosurg. 2006;104:238–53.

    Article  PubMed  Google Scholar 

  14. Pirotte B, Goldman S, Massager N, David P, Wikler D, Lipszyc M, et al. Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomography-guided stereotactic brain biopsies. J Neurosurg. 2004;101:476–83.

    Article  PubMed  Google Scholar 

  15. Hillner BE, Siegel BA, Liu D, Shields AF, Gareen IF, Hanna L, et al. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol. 2008;26:2155–61.

    Article  PubMed  Google Scholar 

  16. Chatterton BE, Ho Shon I, Baldey A, Lenzo N, Patrikeos A, Kelley B, et al. Positron emission tomography changes management and prognostic stratification in patients with oesophageal cancer: results of a multicentre prospective study. Eur J Nucl Med Mol Imaging. 2009;36:354–61.

    Article  CAS  PubMed  Google Scholar 

  17. Scott AM, Gunawardana DH, Wong J, Kirkwood I, Hicks RJ, Ho Shon I, et al. Positron emission tomography changes management, improves prognostic stratification and is superior to gallium scintigraphy in patients with low-grade lymphoma: results of a multicentre prospective study. Eur J Nucl Med Mol Imaging. 2009;36:347–53.

    Article  PubMed  Google Scholar 

  18. Scott AM, Gunawardana DH, Kelley B, Stuckey JG, Byrne AJ, Ramshaw JE, et al. PET changes management and improves prognostic stratification in patients with recurrent colorectal cancer: results of a multicenter prospective study. J Nucl Med. 2008;49:1451–7.

    Article  PubMed  Google Scholar 

  19. Scott AM, Gunawardana DH, Bartholomeusz D, Ramshaw JE, Lin P. PET changes management and improves prognostic stratification in patients with head and neck cancer: results of a multicenter prospective study. J Nucl Med. 2008;49:1593–600.

    Article  PubMed  Google Scholar 

  20. Nakamoto Y, Togashi K, Kaneta T, Fukuda H, Nakajima K, Kitajima K, et al. Clinical value of whole-body FDG-PET for recurrent gastric cancer: a multicenter study. Jpn J Clin Oncol. 2009;39:297–302.

    Article  PubMed  Google Scholar 

  21. Kato T, Shinoda J, Nakayama N, Miwa K, Okumura A, Yano H, et al. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. AJNR Am J Neuroradiol. 2008;29:1176–82.

    Article  CAS  PubMed  Google Scholar 

  22. Yamamoto Y, Nishiyama Y, Kimura N, Kameyama R, Kawai N, Hatakeyama T, et al. 11C-acetate PET in the evaluation of brain glioma: comparison with 11C-methionine and 18F-FDG-PET. Mol Imaging Biol. 2008;10:281–7.

    Article  CAS  PubMed  Google Scholar 

  23. Potzi C, Becherer A, Marosi C, Karanikas G, Szabo M, Dudczak R, et al. [11C] methionine and [18F] fluorodeoxyglucose PET in the follow-up of glioblastoma multiforme. J Neurooncol. 2007;84:305–14.

    Article  PubMed  Google Scholar 

  24. Kumar AJ, Leeds NE, Fuller GN, Van Tassel P, Maor MH, Sawaya RE, et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology. 2000;217:377–84.

    CAS  PubMed  Google Scholar 

  25. Mullins ME, Barest GD, Schaefer PW, Hochberg FH, Gonzalez RG, Lev MH. Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am J Neuroradiol. 2005;26:1967–72.

    PubMed  Google Scholar 

  26. Rock JP, Scarpace L, Hearshen D, Gutierrez J, Fisher JL, Rosenblum M, et al. Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis. Neurosurgery. 2004;54:1111–7.

    Article  PubMed  Google Scholar 

  27. Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol. 2000;21:901–9.

    CAS  PubMed  Google Scholar 

  28. Croteau D, Scarpace L, Hearshen D, Gutierrez J, Fisher JL, Rock JP, et al. Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies: semiquantitative and qualitative histopathological analyses of patients with untreated glioma. Neurosurgery. 2001;49:823–9.

    Article  CAS  PubMed  Google Scholar 

  29. Kato T, Shinoda J, Nakayama N, Miwa K, Okumura A, Yano H, et al. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. AJNR Am J Neuroradiol. 2008;29:1176–82.

    Article  CAS  PubMed  Google Scholar 

  30. Tian M, Zhang H, Oriuchi N, Higuchi T, Endo K. Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur J Nucl Med Mol Imaging. 2004;31:1064–72.

    CAS  PubMed  Google Scholar 

  31. Yamamoto Y, Nishiyama Y, Kimura N, Kameyama R, Kawai N, Hatakeyama T, et al. 11C-acetate PET in the evaluation of brain glioma: comparison with 11C-methionine and 18F-FDG-PET. Mol Imaging Biol. 2008;10:281–7.

    Article  CAS  PubMed  Google Scholar 

  32. Pöpperl G, Kreth FW, Mehrkens JH, Herms J, Seelos K, Koch W, et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging. 2007;34:1933–42.

    Article  PubMed  Google Scholar 

  33. Hatakeyama T, Kawai N, Nishiyama Y, Yamamoto Y, Sasakawa Y, Ichikawa T, et al. 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging. 2008;35:2009–17.

    Article  CAS  PubMed  Google Scholar 

  34. Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46:945–52.

    CAS  PubMed  Google Scholar 

  35. Kaye AH, Walker DG. Low-grade astrocytomas: controversies in management. J Clin Neuroscience. 2000;7:475–83.

    Article  CAS  Google Scholar 

  36. Sawataishi J, Mineura K, Sasajima T, Kowada M, Sugawara A, Shishido F. Effects of radiotherapy determined by 11C-methyl-L-methionine positron emission tomography in patients with primary cerebral malignant lymphoma. Neuroradiology. 1992;34:517–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiko Yamane.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00259-009-1372-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamane, T., Sakamoto, S. & Senda, M. Clinical impact of 11C-methionine PET on expected management of patients with brain neoplasm. Eur J Nucl Med Mol Imaging 37, 685–690 (2010). https://doi.org/10.1007/s00259-009-1302-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1302-y

Keywords

Navigation